To view an archived recording of this presentation please click the following link:

https://youtu.be/XR9q77gVqJ8

Please scroll down this file to view a copy of the slides from the session.

Disclaimer

This document was created by its author and/or external organization. It has been published on the Public Health Ontario (PHO) website for public use as outlined in our Website Terms of Use. PHO is not the owner of this content. Any application or use of the information in this document is the responsibility of the user. PHO assumes no liability resulting from any such application or use.

Bridging Hepatitis C Care
Gaps: A Modeling Approach
for Achieving WHO Hepatitis C
Elimination Targets in Ontario,
Canada

Dr. Yeva SahakyanScientific Associate
Health Systems and Policy Research
Collaborative Centre, UHN

Dr. Beate Sander
Senior Scientist
Health Systems and Policy Research
Collaborative Centre, UHN

Dr. Hong Anh TuHealth Economist
Health Technology Assessment,
Ontario Health

We acknowledge that the University Health Network operates on the traditional territory of many nations including the Mississaugas of the Credit, the Anishnabeg, the Chippewa, the Haudenosaunee and the Wendat peoples and is now home to many diverse First Nations, Inuit and Métis peoples from across Turtle Island.

We acknowledge that Toronto is covered by Treaty 13 with the Mississaugas of the Credit.

We encourage our team, colleagues, and partners to take time to learn about the lands they are currently on and action these learnings. We stand with all Indigenous people, past and present, in promoting the wise stewardship of the lands on which we live.

Disclaimer

This presentation was created by its author and/or external organization. It will be published on the Public Health Ontario (PHO) website for public use as outlined in our Website Terms of Use.

PHO is not the owner of this content. Any application or use of the information in this document is the responsibility of the user. PHO assumes no liability resulting from any such application or use.

Learning Objectives

Identify key strategies for scaling up hepatitis C services in Ontario to meet WHO's hepatitis C elimination goals.

Discuss the timeline and feasibility of achieving the WHO's hepatitis C elimination goals.

Assess the cost-effectiveness of presented strategies.


Describe the use modeling techniques and economic evaluation to assist OHTAC's funding recommendations in Ontario and guide policy decisions.

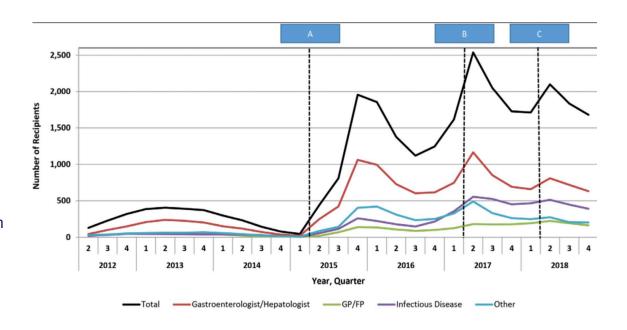
SEPTEMBER 2025

Bridging Hepatitis C Care Gaps: A Modeling Approach for Achieving WHO's Targets in Ontario, Canada

Presenters: Yeva Sahakyan, Beate Sander

Chronic Hepatitis C Burden

- Affects 55 million individuals worldwide
- Lead to life-threatening complications
 - Liver cirrhosis
 - Hepatocellular carcinoma
 - Liver failure and transplantation
- Responsible for 290,000 annual liverrelated deaths


DAA Coverage Policy and Prescribing Trends in Ontario

Direct-acting antivirals

- Cure rates >95%
- Favorable safety profiles
- Opportunity to eliminate HCV as a public health concern

Coverage policy in ON

- Q1 2015: initial DAA coverage through prior authorization program
- Q1 2017: expanded listing of all DAAs as limited-use products
- Q2 2018: the introduction of newer DAAs

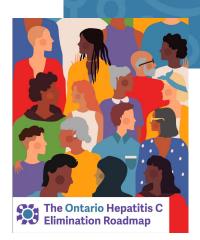
WHO's 2030 HCV global elimination goals

Reduce new infections by 90%

Diagnose 90% of people living with hepatitis C

Initiate treatment for 80% of people living with hepatitis C

Reduce mortality by 65% compared with 2015 levels



Canada's Commitment to HCV Elimination

 Identify gaps along the HCV care-cascade: diagnosis, linkage to care, treatment, and cure

- Ontario Roadmap calls for intensified testing and treatment scale-up
 - Current screening: risk-based, targeting high-risk groups
- Ontario is lagging in HCV elimination progress

BLUEPRINT TO INFORM HEPATITIS C ELIMINATION EFFORTS IN CANADA \$\phi\$

Objective

To identify the level of service scale-up and investments needed along the "HCV care-cascade" to achieve the WHO's HCV elimination targets by 2030 in Ontario, Canada.

Methods

Economic Analysis

Design: Cost-utility analysis using a decision-model

Population: Individuals with HCV in Ontario

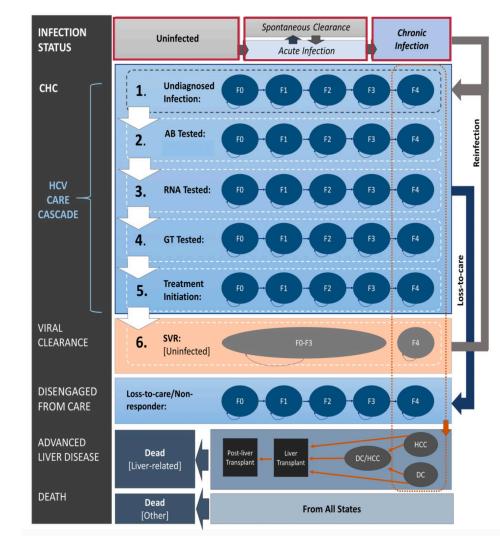
Comparators: Scale-up vs. Status quo

Outcomes: Mortality, quality-adjusted life years (QALYs), health system costs

Perspective: Ontario health system

Time horizon: 2018-2030 (12 years)

Cost-effectiveness threshold: CA \$50,000 per QALY gained

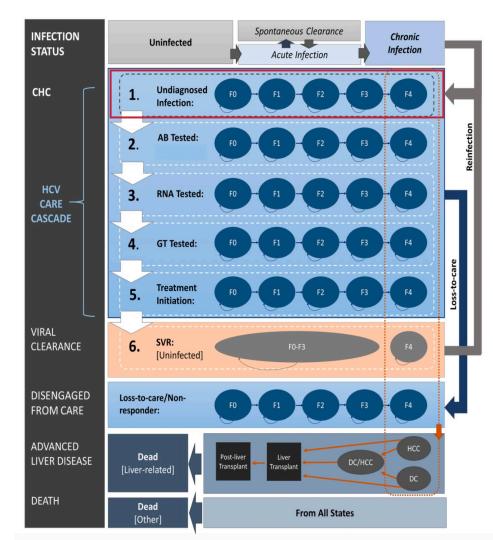

ON population stratified into:

Spontaneous Clearance **INFECTION** Chronic Uninfected **STATUS** Infection Acute Infection CHC Undiagnosed Infection: **AB Tested:** HCV **RNA Tested:** CARE CASCADE GT Tested: **Treatment** Initiation: VIRAL SVR: 6. CLEARANCE [Uninfected] DISENGAGED Loss-to-care/Non-FROM CARE responder: ADVANCED Dead LIVER DISEASE Post-liver Transplant [Liver-related] Transplant **DEATH** Dead From All States [Other]

ON population stratified into:

HCV UNINFECTED

- Can become infected with HCV
 - → Spontaneous clearance
 - → Chronic HCV

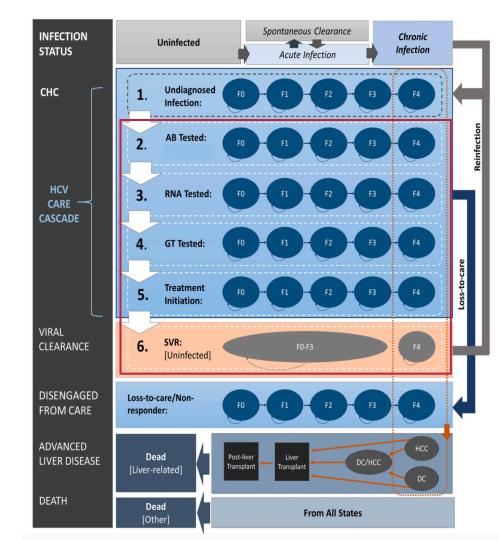

ON population stratified into:

HCV UNINFECTED

- Can become infected with HCV
 - → Spontaneous clearance
 - → Chronic HCV

HCV INFECTED

- Undiagnosed CHC
 - ~33% undiagnosed HCV


ON population stratified into:

HCV UNINFECTED

- Can become infected with HCV
 - → Spontaneous clearance
 - → Chronic HCV

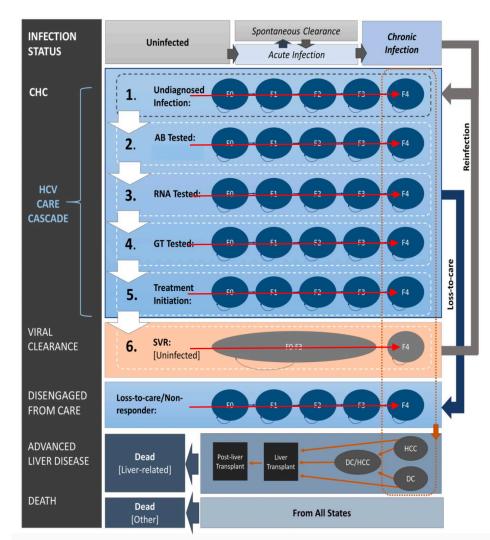
HCV INFECTED

- Undiagnosed CHC
 - ~33% undiagnosed HCV
- Diagnosed CHC (care cascade)
 - Tested (AB, RNA, GT)
 - Treatment initiated
 - SVR (cure)

ON population stratified into:

HCV UNINFECTED

- Can become infected with HCV
 - → Spontaneous clearance
 - → Chronic HCV


HCV INFECTED

- Undiagnosed CHC
 - ~33% undiagnosed HCV
- Diagnosed CHC (care cascade)
 - Tested (AB, RNA, GT)
 - Treatment initiated
 - SVR (cure)
- Loss-to-care

Spontaneous Clearance INFECTION Chronic Uninfected **STATUS** Infection Acute Infection Undiagnosed CHC Infection: **AB Tested:** HCV **RNA Tested:** CARE **CASCADE GT Tested:** Initiation: VIRAL CLEARANCE [Uninfected] DISENGAGED Loss-to-care/Non-FROM CARE responder: ADVANCED Dead Post-liver Liver LIVER DISEASE Transplant [Liver-related] **DEATH** Dead From All States [Other]

CHC Natural History

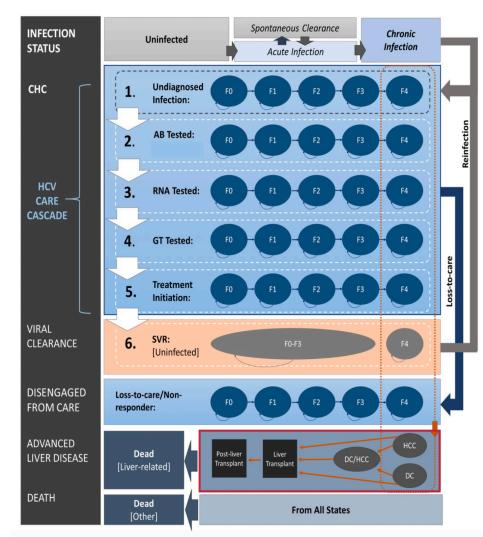
Fibrosis [F0-F4 (cirrhosis)]

CHC Natural History

Fibrosis [F0-F4 (cirrhosis)]

Individuals with cirrhosis can progress to advanced liver disease (ALD)

- Decompensated cirrhosis
- Hepatocellular carcinoma
- Liver transplantation


Only individuals with ALD are at risk of

Liver-related mortality

SVR:

Individuals who achieved SVR (cure) at stages:

- F0-F3 were assumed **to stop** disease progression
- F4 (cirrhosis) or ALD were assumed to have reduced progression

Model Parameters

INFECTED (CHC prevalence in ON)

Undiagnosed CHC

Diagnosed CHC (care cascade)

Model Parameters

INFECTED (CHC prevalence in ON)

Undiagnosed CHC

By age and fibrosis level [F0-F4]

- ~33% undiagnosed HCV
- Based on annual incidence of ALD events using back-calculation
- Diagnosed CHC (care cascade)

```
Received: 18 September 2023 | Revised: 20 December 2023 | Accepted: 8 February 2024

DOI: 10.1111/liv.15875

ORIGINAL ARTICLE

WILEY
```

Impact of new direct-acting antiviral therapy on the prevalence and undiagnosed proportion of chronic hepatitis C infection

```
Farinaz Forouzannia<sup>1</sup> | Abdullah Hamadeh<sup>1</sup> | Ana Maria Passos-Castilho<sup>2</sup> | Aysegul Erman<sup>3</sup> | Amanda Yu<sup>4</sup> | Zeny Feng<sup>5</sup> | Naveed Z. Janjua<sup>4,6,7</sup> | Beate Sander<sup>3,8,9,10</sup> | Christina Greenaway<sup>2</sup> | William W. L. Wong<sup>1,3,8,9</sup>
```


Model Parameters

INFECTED (CHC prevalence in ON)

Undiagnosed CHC

By age and fibrosis level [F0-F4]

- ~33% undiagnosed HCV
- Based on annual incidence of ADL events using back-calculation
- Diagnosed CHC (care cascade)

By age and fibrosis level [F0-F4]

Based on HCV care cascade 2018 (ICES data)

- Tested (AB, RNA, GT)
- Treatment initiated
- SVR (cure)
- Loss-to-care

```
Received: 18 September 2023 | Revised: 20 December 2023 | Accepted: 9 February 2024

DOI: 10.1111/liv.15875

ORIGINAL ARTICLE

WILEY
```

Impact of new direct-acting antiviral therapy on the prevalence and undiagnosed proportion of chronic hepatitis C infection

```
Farinaz Forouzannia<sup>1</sup> | Abdullah Hamadeh<sup>1</sup> | Ana Maria Passos-Castilho<sup>2</sup> | Aysegul Erman<sup>3</sup> | Amanda Yu<sup>4</sup> | Zeny Feng<sup>5</sup> | Naveed Z. Janjua<sup>4,6,7</sup> | Beate Sander<sup>3,8,9,10</sup> | Christina Greenaway<sup>2</sup> | William W. L. Wong<sup>1,3,8,9</sup>
```


Engagement with the HCV care cascade among high-risk groups: A population-based study

Model Parameters: Costs and Utilities

Research

Health care costs associated with chronic hepatitis C virus infection in Ontario, Canada: a retrospective cohort study

William W.L. Wong PhD, Alex Haines MSc, Karen E. Bremner BSc, Zhan Yao MSc, Andrew Calzavara MSc, Nicholas Mitsakakis PhD, Jeffrey C. Kwong MD MSc, Beate Sander PhD, Hla-Hla Thein MD PhD, Murray D. Krahn MD MSc

ICES Health Administrative Data

- Stratified by
 - Disease severity (fibrosis, ADL, end-oflife) level
- Cost categories

inpatient, outpatient, medication, physician services, ED, home care, long-term care other

ScienceDirect

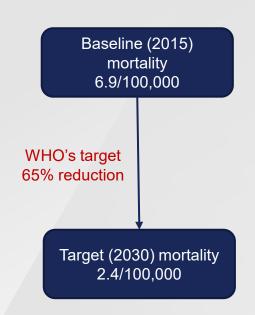
Contents lists available at sciencedirect.com lournal homepage; www.elsevier.com/locate/ivai

A Systematic Review and Meta-analysis of Health Utilities in Chronic Hepatitis C Patients

Yasmin A. Saeed, BScPhm.^{1,4} Arcturus Phoon, BSc.² Joanna M. Bielecki, MISt.² Nicholas Mitsakakis, PhD.^{3,4} Karen E. Bremner, BSc.² Lusine Abrahamyan, MD, PhD.^{2,3} Petros Pechlivanoglou, PhD.⁵ Jordan J. Feld, MD, MPH.⁶ Murray Krahn, MD, MSc.^{1,2,3} William W.L. Wong, PhD.⁷

Systematic review and meta-analysis

- Stratified by
 - Age, sex,
 - Disease severity (fibrosis, ADL) level
- EQ-5D-5L instrument


Strategies

1. Status quo: two-step diagnosis

- Annual AB testing: 4.0% 12.7%, depending on birth cohort (Wong et al 2023)
- 88% of AB(+) receive RNA test (Erman et al 2023)
- 53% of RNA(+) receive treatment (Erman et al 2023)

2. Improving linkage to care

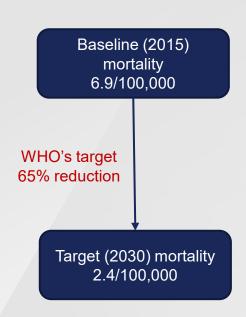
3. Reaching the undiagnosed population

Strategies

Improving linkage to care: reflex testing

- 1. Increase in RNA testing 88% → up to 98%
- 2. Increase treatment uptake 53% → up to 98%

Incremental increases to see if target could be met by 2030


 Count liver-related deaths in 2030 and compare with # of deaths in 2015

If unmet:

Reaching the undiagnosed population: screening

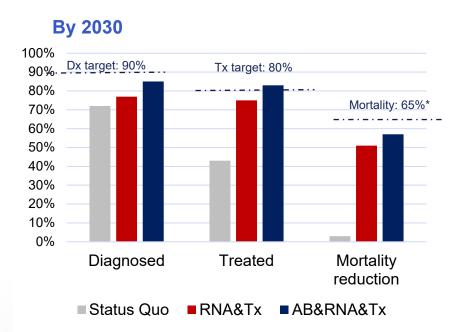
Two-fold increase in AB testing

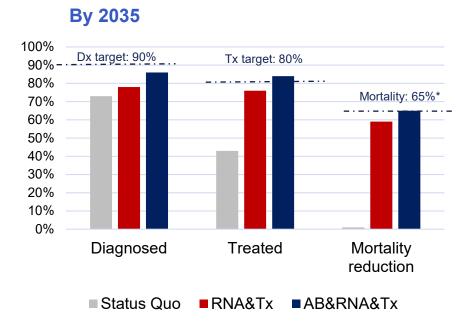
Increase the f/u: if not by 2030 then when?

Analysis

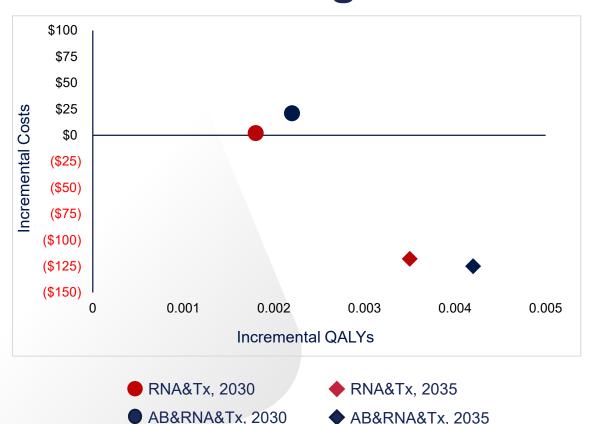
"Reverse" cost-effectiveness

 Estimating the maximum cost the program could incur while remaining cost-effective at a \$50,000 threshold


Stratified analysis by birth cohorts



Results


Do The Strategies Meet WHO's Targets?

Are the Strategies Cost-Effective?

To remain cost-effective at \$50K/QALY, the annual program implementation cost **per 100,000 people** may reach

Year 2030	Cost		
RNA&Tx	\$852K		
AB&RNA&Tx	Not CE*		
Year 2035			
RNA&Tx,	\$2.1M		
AB&RNA&Tx	\$280K**		

*compared to the RNA&Tx strategy
** in addition to RNA&Tx implementation costs, the
program may incur an additional \$280K

Are the Strategies Cost-Effective?

To remain cost-effective at \$50K/QALY, the annual program implementation cost **per 100,000 people** may reach

	Year 2030	Year 2035
<1945 birth cohort:		
RNA&Tx:	\$702K	\$1.5M
RNA&Tx&AB	Not CE*	Not CE*
1945–1965 birth cohort:		
RNA&Tx:	\$2.1M	\$3.8M
RNA&Tx&AB	\$123K	\$335K*
>1965: birth cohort:		
RNA&Tx:	\$450K	\$1.1M
RNA&Tx&AB	Not CE*	\$288K

^{*}compared to the RNA&Tx strategy

^{**} in addition to the RNA&Tx program implementation costs, the AB testing program may incur an additional \$123K

Limitations

Modelling assumptions

- Static cohort did not account for immigration patterns
- One-time screening only no repeated testing for high-risk populations
- No evaluation of existing HCV prevention measures (harm reduction services)

Policy Implications

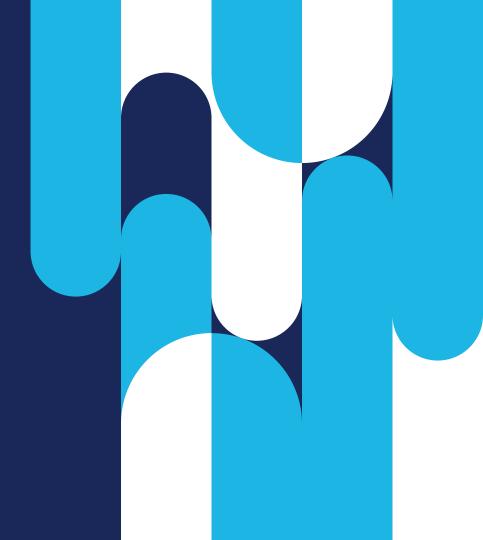
Bridging Research and Policy: Advancing HCV Elimination in Ontario

Challenge

- WHO's 2030 targets are unlikely to be met under current infrastructure
- Extending the timeline to 2035 is more realistic

Strategic Focus

- Streamline care through reflex RNA testing and point-of-care diagnosis and treatment
- Tailored outreach and expanded screening to reach undiagnosed populations


Policy

- Modeling supports strategic resource allocation
- Informs evidence-based decisions for Ontario's HCV strategy

Thank you!

Toward Public Funding of Hepatitis C Screening: Process on How OHTAC Makes Funding Recommendation September 23, 2025

PUBLIC HEALTH ONTARIO ROUND

HONG ANH TU

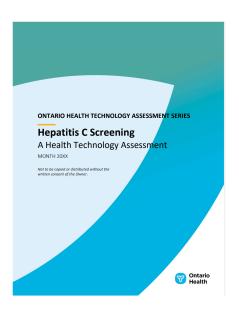
Disclosure

- Salaried employee of Ontario Health*, a publicly funded government agency
- No conflict of interest

* https://www.ontariohealth.ca/

Outline

- Overview of health technology assessment (HTA)
- Ontario Health's current HTA process and methods
 - Hepatitis C Screening



Overview of Health Technology Assessment (HTA)

What is HTA?

- A multidisciplinary process
- Uses explicit methods to determine the value of a health technology at different points in its lifecycle
- Purpose is to inform decision-making in-order-to promote an equitable, efficient, and high-quality health system*

HTA Program at Ontario Health

 To inform the Ontario Ministry of Health about which health care services and technologies to fund publicly based on Ontario Health's recommendations

What Types of Technologies Do We Assess?

Medical Devices

Peripheral

nerve

stimulation

Continuous blood glucose monitoring

Dexcom:

Lab Tests

Hepatitis C screening

Models of Care

Internetdelivered cognitive behavioral therapy

Remote cardiac monitoring

Procedures

Intrathecal drug delivery

OH-HTA Program Team

Clinical Epidemiology

Health Economics

Patient Partnering

Information Specialist

Policy and Program Planning

Operations

Leadership

HTA End-to-End Process

Topic Prioritization Guide

www.hqontario.ca/Portals/0/documents/evidence/reports/hta-topic-prioritization-guide-en.pdf

Hepatitis C Screening

Context

- Policy Issue
 - To conduct an HTA to help inform a recommendation for HCV screening as part of the MOH's plan to achieve the elimination of HCV as a public health threat in Ontario by the year 2030
 - A risk-based approach to HCV screening is currently used in Ontario
 - Expanding the HCV screening approach to all adults or to people born between
 1945 and 1975 in addition to risk-based screening

Expertise Consulted

Ministry of Health and Ministry's Hepatitis C Working Group

 Including members of the Ontario Ministry of Health, Public Health Ontario, the Office of Chief Medical Officer of Health, Health Programs and Delivery Division, Provincial Programs Branch, and the Research, Analysis and Evaluation Branch (RAEB)

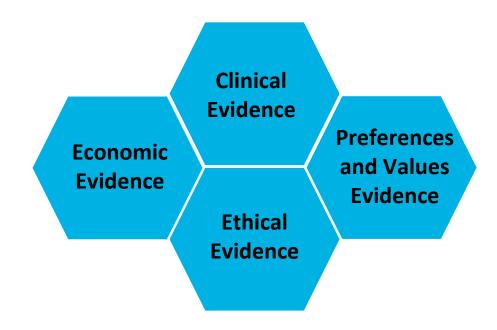
Hepatitis C experts

2 clinicians and 2 nurse practitioners

Primary care provider

1 primary care provider

Ontario Health


Ontario Health personnel

Health economic experts

2 health economists

What Evidence Did We Consider?

Primary Economic Evaluation

- From the perspective of the Ontario Ministry of Health, what is the costeffectiveness of 1-time hepatitis C virus (HCV) screening plus risk-based HCV screening compared with risk-based HCV screening alone for:
 - 1) all adults
 - 2) individuals born between 1945 and 1975 (1945–1975 birth cohort)

Adaption to the Sahakyan et al. Model- Methods

Methods	Sahakyan et al	Ontario Health's model
Design	Cost-utility analysis using a decision-model	Cost-utility analysis using a decision-model
Population	Individuals with HCV in Ontario	Individuals ≥ 18 years in Ontario Individuals born between 1945–1975 in Ontario
Comparators	Scale-up vs. Status quo	Scale-up vs. Status quo
Outcomes	QALYs, health system costs	QALYs, health system costs (updated costs of antibody, RNA tests)
Perspectives	Ontario health system	Ontario Ministry of Health
Time horizon	2018-2030 (12 years)	Lifetime
Cost-effectiveness thresholds	\$50,000 per QALY gained	\$50,000/QALYs, \$100,000/QALYs

Reference Case Analysis: All Adults; Results Per Person

Strategy	Average total costs, \$	Incremental cost, \$a,b,	Average total QALYs	Incremental QALY ^{c,d}	ICER ^b	Life years ^e
Risk-based HCV screening alone	289,702		22.8245			36.9537
HCV screening for all adults*	289,646	-55.30	22.8253	0.0008	Dominant ^c	36.9547

Abbreviations: ICER, incremental cost-effectiveness ratio; QALYs, quality adjusted life years, HCV: hepatitis C virus ^aNegative costs indicate savings; ^bResults may appear inexact due to rounding ^cLess costly and more effective; ^eLife years were not discounted

^{*}Plus risk-based screening

Reference Case Analysis: All Adults (Number of Cases per 100,000 People)

	(1)	
•		

	Cascade of Care Outcomes (Cumulative cases per 100,000 people)					
Strategies	DC	НСС	Liver transplants	Liver-related deaths		
Risk-based screening alone	229	151	4.0	325.3		
HCV screening of all adults*	224	148	3.8	319.3		

HCV screening of all adults **reduced** numbers of DC, HCC, liver transplants, and liver-related deaths

Reference Case Results: 1945–1975 Birth Cohort; Results Per Person

Strategy	Average total costs, \$	Incremental cost, \$a,b,c	Average total QALYs	Incremental QALY ^b	ICER ^b	Life yearse
Risk-based HCV screening	308,996.75		16.6774			24.7684
HCV screening of the 1945–1975 birth cohort*	308,980.37	-15.38	16.6777	0.0003	Dominant ^c	24.7688

Abbreviations: ICER, incremental cost-effectiveness ratio; QALYs, quality adjusted life years, HCV: hepatitis C virus

^aNegative costs indicate savings; ^bResults may appear inexact due to rounding

^cLess costly and more effective; ^eLife years were not discounted

^{*}Plus risk-based screening

Reference Case Results: 1945–1975 Birth Cohort (Number of Cases per 100,000 People)

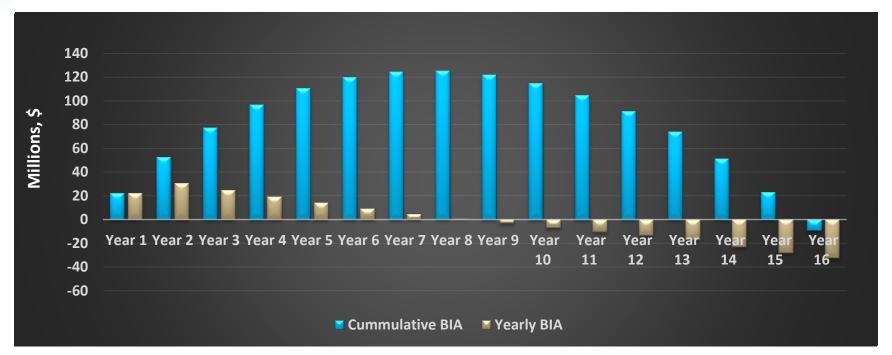
	Cascade of Care Outcomes (Cumulative cases per 100,000 people)					
Strategies	DC	нсс	Liver transplants	Liver-related deaths		
HCV risk-based screening alone	227	147	4.0595	308		
HCV screening of the 1945–1975 birth cohort*	224	145	3.9814	305		

HCV screening of 1945-1975 birth cohort **reduced** numbers of DC, HCC, liver transplants, and liver-related deaths

Budget Impact Analysis

- What is the potential 5-year budget impact for the Ontario Ministry of Health of publicly funding 1-time hepatitis C virus (HCV) screening plus risk-based HCV screening compared with risk-based HCV screening alone for:
 - all adults
 - individuals born between 1945 and 1975 (1945–1975 birth cohort)

Reference Case: All Adults

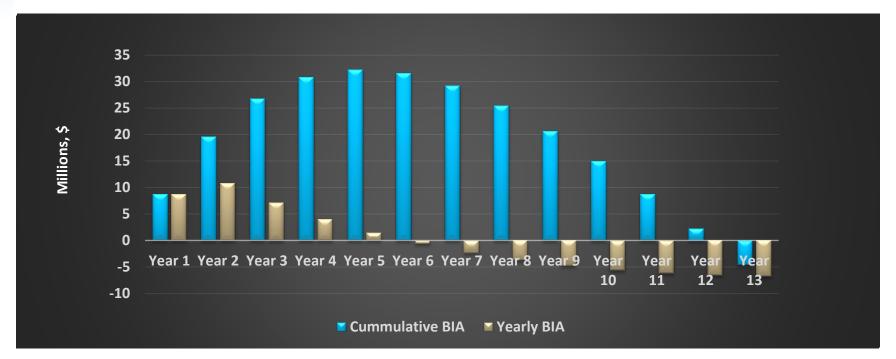

Strategies	Budget impact, \$ million ^a					
Strategies	Year 1	Year 2	Year 3	Year 4	Year 5	Total
HCV risk-based screening	5,543	5,994	6,359	6,713	7,057	31,666
Cost of antibody testing	2.62	2.61	2.60	2.59	2.57	12.99
Cost of RNA testing	0.09	0.10	0.10	0.10	0.10	0.49
Cost of DAAs	48.39	84.66	87.67	88.39	88.45	397.55
Cost of treating CHC complications	5,492	5,907	6,268	6,622	6,966	31,255
HCV screening of all adults*	5,565	6,025	6,383	6,733	7,071	31,777
Cost of antibody testing	3.93	3.91	3.89	3.87	3.85	19.46
Cost of RNA testing	0.14	0.14	0.14	0.14	0.13	0.69
Cost of DAAs	69.25	115.86	115.42	113.04	110.40	523.97
Cost of treating CHC complications	5,492	5,905	6,264	6,616	6,957	31,232
Budget Impact ^{b,c}	22	31	25	19	14	111
Cost of antibody testing	1.31	1.30	1.29	1.29	1.28	6.47
Cost of RNA testing	0.05	0.04	0.04	0.04	0.03	0.2
Cost of DAAs	21	31	28	25	22	126
Cost of treating CHC complications 👢	-0.15	-1.89	-4.31	-6.76	-9.22	-22

^a In 2025 Canadian dollars. ^b Results may appear inexact due to rounding. ^c Negative costs indicate savings.

^{*}Plus risk-based screening

When Will HCV Screening of All Adults Be Cost Savings?

Reference Case: 1945–1975 Birth Cohort


Strategies	Budget impact, \$ million ^a						
Strategies	Year 1	Year 2	Year 3	Year 4	Year 5	Total	
HCV risk-based screening	2,425	2,648	2,845	3,053	3,277	14,248	
Cost of antibody testing	0.59	0.58	0.58	0.57	0.56	2.88	
Cost of RNA testing	0.04	0.04	0.03	0.03	0.03	0.16	
Cost of DAAs	22	36	34	32	29	153	
Cost of treating CHC complications	2,402	2,611	2,810	3,021	3,248	14,093	
HCV screening of 1945–1975 birth cohort*	2,434	2,659	2,852	3,058	3,279	14,282	
Cost of antibody testing	0.88	0.87	0.86	0.85	0.84	4.30	
Cost of RNA testing	0.06	0.05	0.04	0.04	0.03	0.22	
Cost of DAAs	31	48	43	38	33	193	
Cost of treating CHC complications	2,402	2,610	2,808	3,019	3,245	14,085	
Budget Impact ^{b,c}	9	11	7	4	1	32	
Cost of antibody testing	0.29	0.29	0.28	0.28	0.28	1.42	
Cost of RNA testing	0.02	0.02	0.01	0.01	0.01	0.06	
Cost of DAAs	8.85	11.85	8.88	6.38	4.33	40.30	
Cost of treating CHC complications	-0.06	-0.75	-1.62	-2.42	-3.16	-8.01	

^a In 2025 Canadian dollars. ^b Results may appear inexact due to rounding. ^c Negative costs indicate savings.

^{*}Plus risk-based screening

When Will HCV Screening of 1945–1975 Birth Cohort Be Cost-Savings?

Funding Recommendation

Will be available at public posting

Key Messages

Key Messages

Model-based recommendations

- Streamline care
 - Reflex RNA testing
 - Point-of-care diagnosis
- Modeling supports strategic source allocation

OH analysis

 Screening all adults, or the 1945–1975 birth cohort, plus risk-based screening is a dominant strategy (less costly and more effective than riskbased screening alone)

5-year Budget Impact

- Public funding of HCV screening for all adults
 * \$111M
- Public funding of HCV screening for the 1945– 1975 birth cohort ~
 \$32M

Thank you