

To view an archived recording of this presentation please click the following link:

https://youtu.be/pvDrpS8giCE

Please scroll down this file to view a copy of the slides from the session.

Disclaimer

This document was created by its author and/or external organization. It has been published on the Public Health Ontario (PHO) website for public use as outlined in our Website Terms of Use. PHO is not the owner of this content. Any application or use of the information in this document is the responsibility of the user. PHO assumes no liability resulting from any such application or use.

What's New in Group A streptococcus (GAS) and Invasive GAS Disease Research in Ontario

Disclaimer

This presentation was created by its authors. It will be published on the Public Health Ontario (PHO) website for public use as outlined in our Website Terms of Use.

PHO is not the owner of this content. Any application or use of the information in this document is the responsibility of the user.

PHO assumes no liability resulting from any such application or use.

Learning objectives

- 1. Describe epidemiology of invasive and non-invasive Group A Streptococcus (GAS) in children
- 2. Describe recent changes in the incidence of iGAS in Toronto and the Peel region
- 3. Review the incidence and epidemiology of iGAS in homeless persons
- 4. Determine the viability of whole genome sequencing to differentiate invasive from non-invasive GAS clinical isolates

Comparison of pharyngeal and invasive isolates of Streptococcus pyogenes by whole genome sequencing

Joseph Zeppa

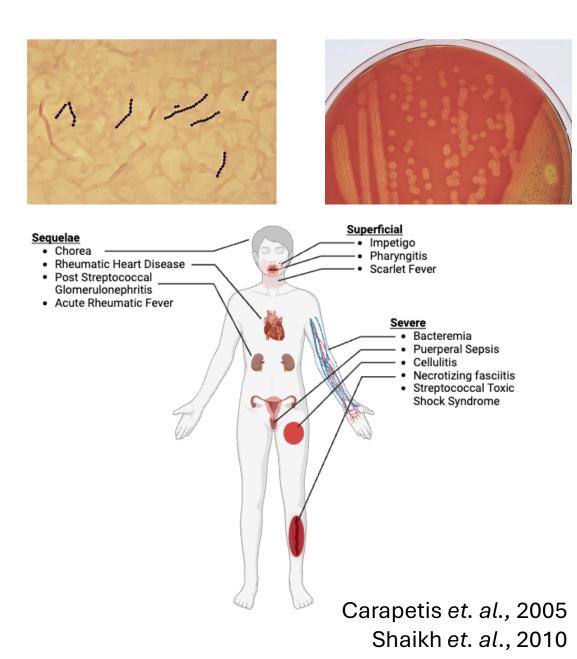
Clinical Microbiology Fellow (PGY2)

Department of Laboratory Medicine and Pathobiology

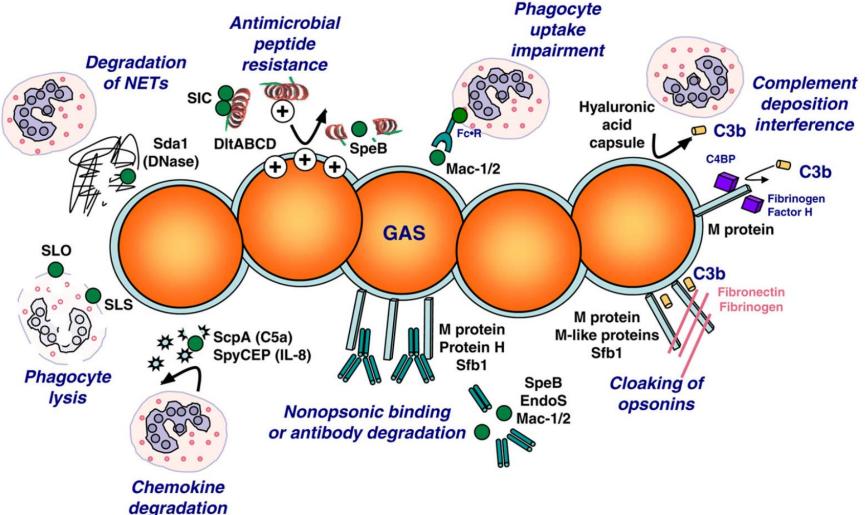
University of Toronto

Conflicts of Interest/Disclosures

• None


Overview

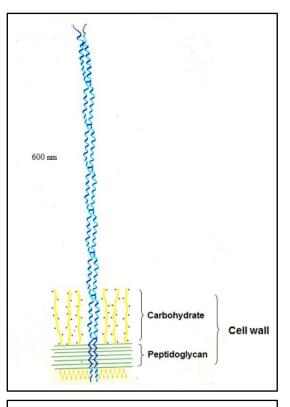
- Background on Group A Streptococcus (S. pyogenes)
- Findings from our recently published study:

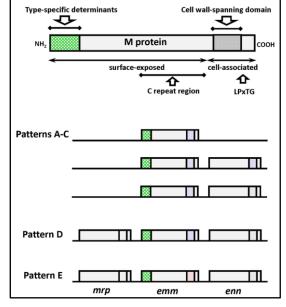


Streptococcus pyogenes

- Gram-positive, human restricted pathogen
- Capable of infecting/colonizing almost any tissue in the body
- Causing a wide variety of disease manifestations
 - Asymptomatically colonizes ~12% of school-aged children
 - 600 million cases of pharyngitis
 - 100 million skin infections
 - 500,000 deaths/year

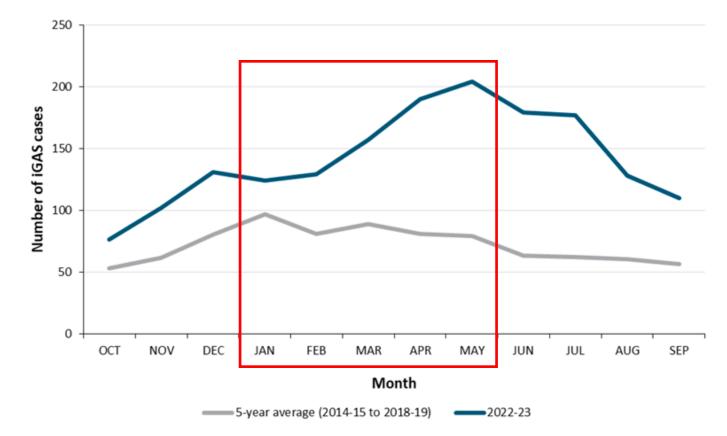
Group A Streptococcus Virulence Factors


Walker et. al. 2014

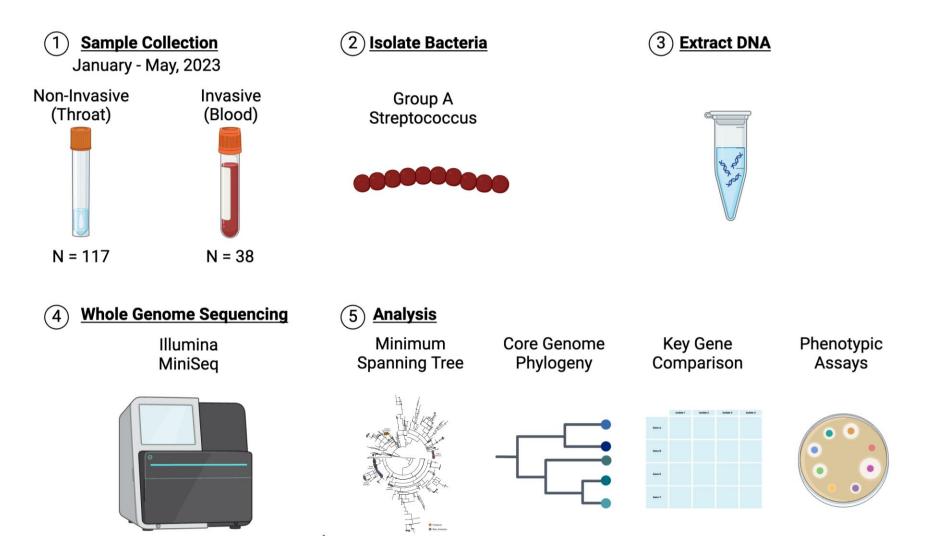

M protein and GAS typing

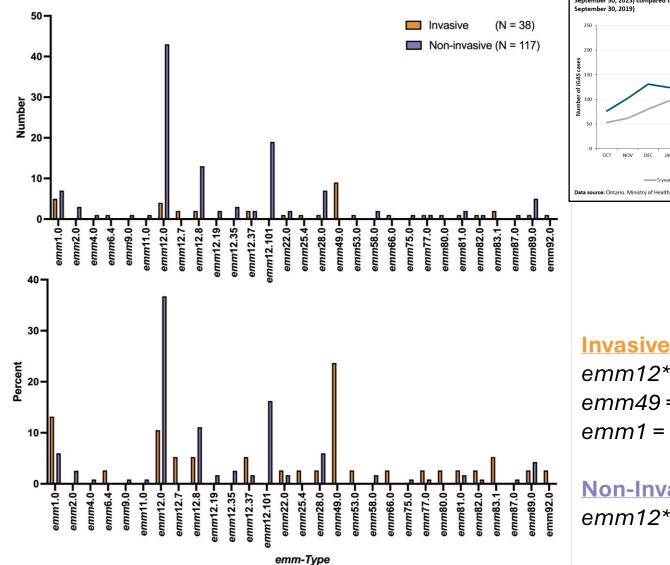
<u>M protein</u>

- Surface bound, antiphagocytic virulence factor
- Used in typing:


Scheme	Method	Number
M serotyping	Immunoprecipitation using rabbit serum	>80
emm typing	 Sequencing first 30 codons (90 bp) of mature M protein >92% similarity = same <i>emm</i> type 	> 275
emm subtyping	 Sequencing first 50 codons (150bp) of mature M protein plus 10 terminal COOH codons (30bp) = 180bp Any change to 180bp sequence = new <i>emm</i> subtype 	>1900

Ontario, Canada – 2022 - 2023


Figure 2. Confirmed iGAS case counts by month: 2022-23 season (October 1, 2022 – September 30, 2023) compared to five pre-pandemic seasons (October 1, 2014 – September 30, 2019)


Data source: Ontario. Ministry of Health; 2024.4

Can we use whole genome sequencing to determine if there is a genomic change that can account for this trend?

Methodology

emm-(sub)type distribution in clinical isolates Figure 2. Confirmed iGAS case counts by month: 2022-23 season (October 1, 2022 -

September 30, 2023) compared to five pre-pandemic seasons (October 1, 2014 -5-year average (2014-15 to 2018-19) = 2022-23 Data source: Ontario, Ministry of Health: 2024.

 $emm12^* = 26.36\%$ emm49 = 23.68%emm1 = 13.16%

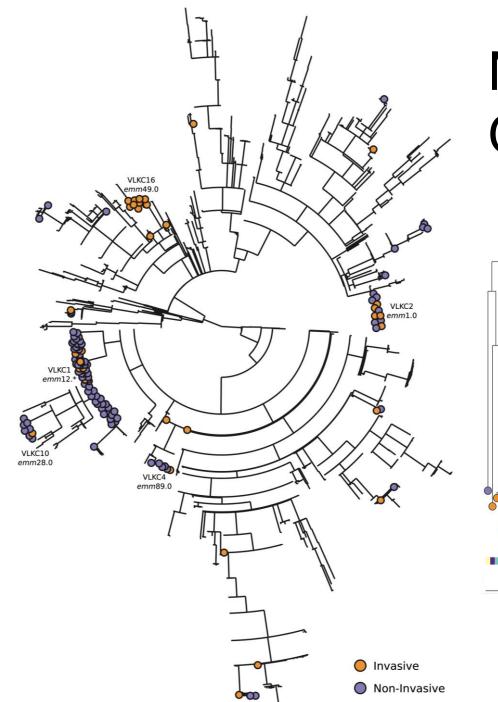
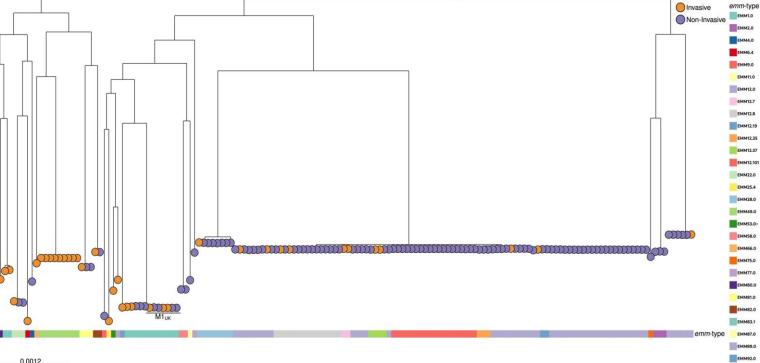

Non-Invasive emm12* = 70.09%

Table 6. Number (%^{*}) of most commonly reported *emm* types among confirmed iGAS cases by age group**: Ontario, 2022-23 season (October 1, 2022 - September 30, 2023) compared to the five pre-pandemic seasons (October 1, 2014 – September 30, 2019)


Most commonly reported <i>emm</i> type by rank	2022-23 season: All cases	Previous five seasons: All cases	2022-23 season: cases age ≥ 18	Previous five seasons: cases age ≥ 18	2022-23 season: cases age < 18	Previous five seasons: cases age < 18
emm1	250 (19.5%)	480 (16.6%)	190 (16.7%)	395 (15.0%)	60 (42.0%)	85 (33.9%)
emm12	232 (18.1%)	172 (5.9%)	181 (15.9%)	155 (5.9%)	51 (35.7%)	17 (6.8%)
emm49	114 (8.9%)	82 (2.8%)	109 (9.6%)	77 (2.9%)	5 (3.5%)	5 (2.0%)
emm82	102 (8.0%)	34 (1.2%)	102 (9.0%)	28 (1.1%)	0 (0.0%)	6 (2.4%)
emm80	70 (5.5%)	19 (0.7%)	69 (6.1%)	19 (0.7%)	1 (0.7%)	0 (0.0%)
emm74	53 (4.1%)	237 (8.2%)	53 (4.7%)	231 (8.7%)	0 (0.0%)	5 (2.0%)
emm83	38 (3.0%)	35 (1.2%)	37 (3.2%)	35 (1.3%)	1 (0.7%)	0 (0.0%)
emm41	37 (2.9%)	20 (0.7%)	36 (3.2%)	20 (0.8%)	1 (0.7%)	0 (0.0%)
emm89	34 (2.7%)	164 (5.7%)	34 (3.0%)	157 (5.9%)	0 (0.0%)	7 (2.8%)
emm92	33 (2.6%)	9 (0.3%)	33 (2.9%)	9 (0.3%)	0 (0.0%)	0 (0.0%)
emm53	27 (2.1%)	142 (4.9%)	27 (2.4%)	142 (5.4%)	0 (0.0%)	0 (0.0%)
emm77	27 (2.1%)	59 (2.0%)	26 (2.3%)	59 (2.2%)	1 (0.7%)	0 (0.0%)
Other	266 (20.7%)	1,441 (49.8%)	242 (21.2%)	1,315 (49.8%)	23 (16.1%)	126 (50.2%)
Total with emm type	1,283 (75.2%)	2,894 (67.0%)	1,139 (75.0%)	2,642 (67.3%)	143 (76.9%)	251 (64.4%)
Total without <i>emm</i> type	424 (24.8%)	1,426 (33.0%)	380 (25.0%)	1,286 (32.7%)	43 (23.1%)	139 (35.6%)
Total Data source: Case data: O	1,707 (100%)	4,320 (100%)	1,519 (100%)	3,928 (100%)	186 (100%)	390 (100%)

Data source: Case data: Ontario. Ministry of Health: 2024.

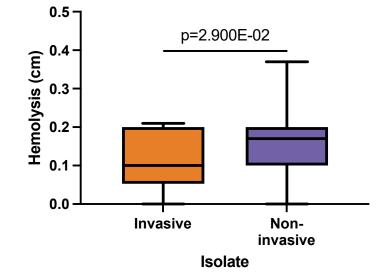
Note: "Emm type percentages are among cases with emm type information available. **Cases with an unknown age are excluded from the age-related columns in this table.

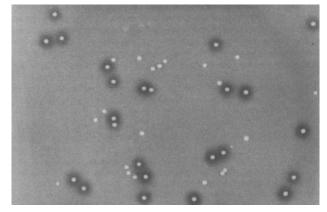


Minimum Spanning Tree and Core Genome Phylogeny

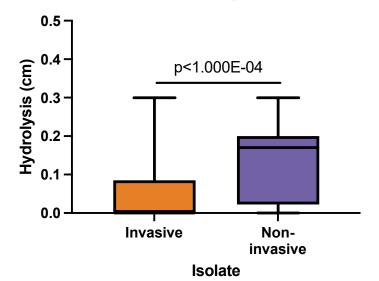
Non-invasive isolates have more SAg and **DNase genes** More prominent in **INVASIVE**

0 · · ·		
<u>Category</u>	Subcategory	<u>Gene</u>
		emm
	M & M-like proteins	enn
		mrp
		hasA
	Capsule	hasB
		hasC
		speA
		speC
		speG
		speH
		spel
		speJ
	Superantigens	speK
		speL
		speM
		speQ
		speR
		ssa
		smez
		spnA
		spdB/mf1
		sda1
	DNases	sda2
Virulence Factors	Divases	spd1/mf2
		spd3/mf3
		spd4/mf4
		sdn
		sagA
	Leukocidins & associated genes	slo
		nga
	Hyaluronidases	hlyA
		hylP
		endoS
		scpA
		scpC
		sodA
		cppA
		grab
	Other Proteases and Virulence	ideS/Mac
	Factors	sic
	1 dotoro	speB
		s5na
		cfa
		htrA/degP
		ska
		slaA
		spyA fbaA
		fbaB fbaE4
	Eibropootin Binding Drotoing	fbp54
	Fibronectin Binding Proteins	sfbl/prtF1
		sfbll/sof
Adherence and other		prtF2
binding proteins	Onling on Diadiag Dest.	sfbx
	Collagen Binding Proteins	сра
	Laminin Binding Proteins	lmb
	Plasmin Receptor	plr/gapA
	Collagen-like Proteins	sclA sclB




isolates

Non-invasive isolates produce more lytic and proteolytic factors



Blood Agar

Mutations in key two-component system only found in invasive isolates

<u>CovS</u>

1	MENQKQKQKK	YKNSLPKRLS	NIFFVLFFCI	FSAFTLIAYS	STNYFLLKKE	KQSVFQAVNI	
61	VRVRLSEVDS	NFTLENLAEV	LYKNDKTHLR	IDDRKGSRVI	RSERDITNTL	DANQDIYVYN	Turnetione
121	IDKQMIFTTD	NEESS <u>P</u> GLHG	PIGRVYHDHI	EDQYRGFSMT	QKVYSNRTGK	FVGYVQVFHD	<u>Functiona</u> Domain
181	LGNYYVIRAR	LLFWLLVVEL	FGTSL AYLII	LITTRRF <mark>LKP</mark>	LHNLHEVMRN	ISENPNNLNL	TM1/2
241	RSDISSGDEI	EELSVIFDNM	LDKLETHTKL	QSRFISDVSH	ELRTPVAIIK	GHIGLLQRWG	HAMP
301	KDDSDILEES	LTATAHEADR	MAIMINDMLD	MVR VQGSFEG	HQNDMTVLED	SIETVVGNFR	HisKA HATPase
361	VLREDFIFTW	QSENPKTIAR	IYKNH <mark>FEQAL</mark>	MILIDNAVKY	SRKEKKIAIN	LSVTGKQEAI	111111100
421	VRVQDKGEGI	SKEDIEHIFE	RFYRTDKSRN	RTSTQAGLGI	GLSILKQIVD	GYHLQMKVES	
481	ELNEGSVFIL	HIPLAQSKES					

Invasive

7/38 = 18.4%

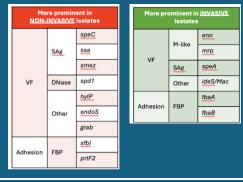
Non-Invasive

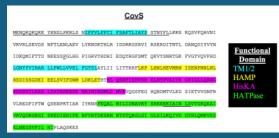
0/117 = 0%

Isolate Identifier Deleted Location 23SC_014M0062_S3_L001 1 - 46 TM1 TM1 23SG 034M0106 S8 L001 1 - 4623SH 038M1879 S10 L001 1 - 46TM1 TM1 23SH_071M0020_S18_L001 1 - 46137 **Non-Functional Region** 23SC_035M0015_S9_L001 23SC_083M0072_S18_L001 405 - 412 HATPase 23SH 005M1638 S1 L001 405 - 412 HATPase

Amino Acid(s)

Antimicrobial resistant genes in clinical isolates


Antibiotic class	Gene	Invasive (<i>N</i> = 38)		Non-ir	Non-invasive ($N = 117$)	
		Number	Percent	Number	Percent	_
Aminoglycoside	ANT (6)-Ia	2	5.26%	0	0.00%	5.890E-02
	APH(3′)-IIIa	2	5.26%	3	2.56%	5.967E-01
Trimethoprim	dfrG	1	2.63%	0	0.00%	2.452E-01
Macrolide	mefA	2	5.26%	1	0.85%	1.490E-01
Macrolide/streptogramin	msrD	2	5.26%	1	0.85%	1.49E-01
Macrolide/lincosamine/streptogramin	ermA	1	2.63%	3	2.56%	1.000E0
	ermB	0	0.00%	5	4.27%	3.349E-01
	ermT	2	5.26%	0	0.00%	5.890E-02
Streptothricin	Sat4	2	5.26%	3	2.56%	5.967E-01
Tetracyclines	tetM	5	13.16%	7	5.98%	1.685E-01
	tetO	0	0.00%	1	0.85%	1.000E0


WGS: both invasive and non-invasive isolates represented across a diverse set of lineages

Invasive emm12* = 26.36% emm49 = 23.68% emm1 = 13.16% Non-Invasive emm12* = 70.09%

Conclusion

Differing prevalence of SAg, DNases and single VF/Adh.

Non-Invasive isolates produced more lytic and proteolytic factors

Only Invasive isolates had mutations in *covS* gene

Future Directions

- Expand sample population to increase sample numbers and strengthen analyses
- Gather patient data to integrate host factors into overall findings
- Assess virulence factor/adhesin transcription/production using additional assays:
 - RNA sequencing
 - Assess protein production via Western blot/multiplex assay
 - *in vivo* animal models
- Phenotypic AST testing of isolates

Acknowledgements

University of Toronto

Ellen Avery

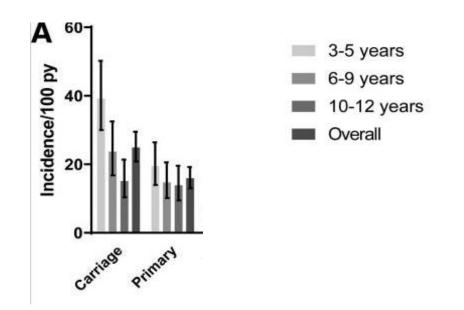
SHL Team

Patryk Aftanas Simone Uleckas Nicholas Waglechner Christie Vermeiren Xena Li Robert Kozak Erin Choi Prachi Patel Hubert Jiminez Kevin Katz Finlay Maguire

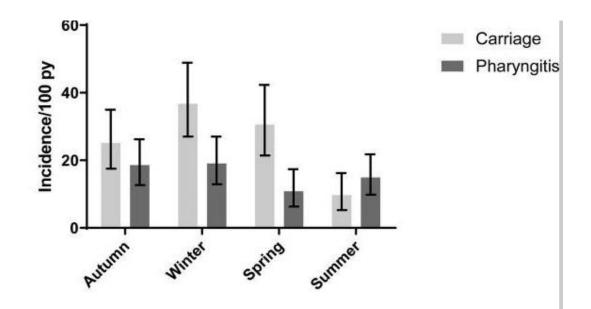
Group A Streptococcus in Children: A comparison of invasive and noninvasive isolates

Michelle Science The Hospital for Sick Children, Department of Paediatrics

Aaron Campigotto The Hospital for Sick Children, Department of Laboratory Medicine

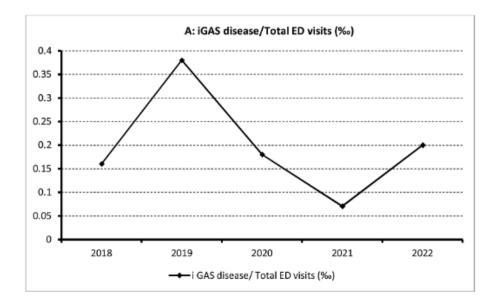

Learning objectives

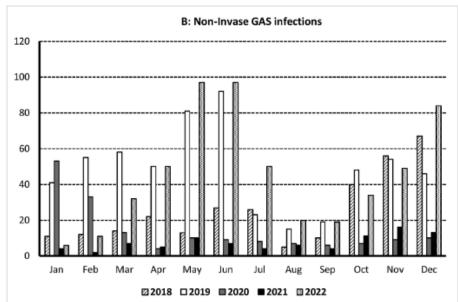
Describe epidemiology of invasive and non-invasive Group A Streptococcus (GAS) in children


- 1. Understand the clinical presentations of invasive and non-invasive GAS disease
- 2. Understand circulating GAS *emm* types in this population and describe the *emm* types based on invasive and non-invasive clinical presentations

Colonization of GAS in children: Potential confounder?

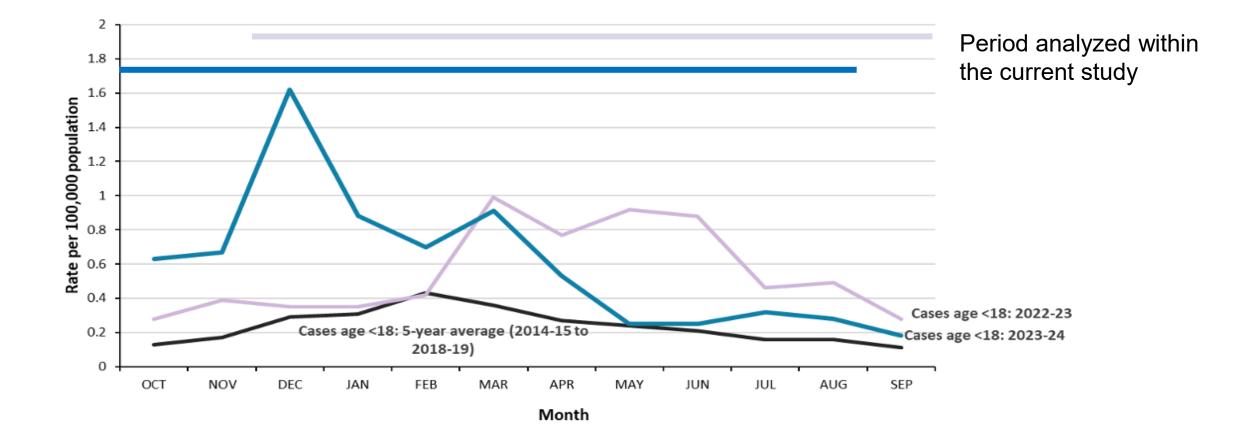
• Colonization of GAS within the pharynx in up to 20% of children


• Seasonality present when assessing for colonization



Prevalence of non-invasive GAS disease in children

Difficult to estimate given lack of reporting system and common clinical presentations including:


- Pharyngitis
- SSTI (e.g. impetigo)
- Scarlet fever
- Seasonality observed with non-invasive GAS disease

SickKids

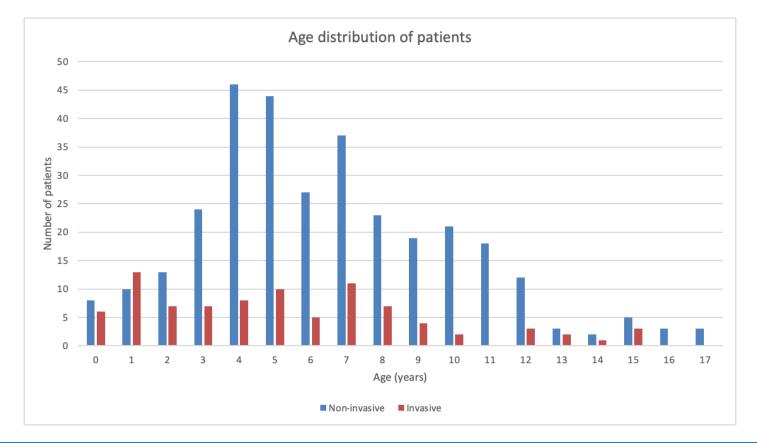
Rate of Invasive GAS reported in Ontario between 2022-2024 among children

Clinical and bacterial characteristics of GAS

All clinical specimens with GAS isolated from SickKids between December 1, 2022 to August 31, 2024

Time period chosen to correspond with increase iGAS prevalence

Only 1 specimen per patient per 2-week period included in analysis

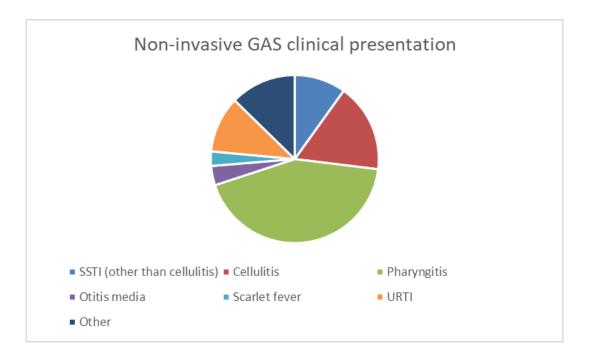

Patient and bacterial evaluation

Clinical characteristics

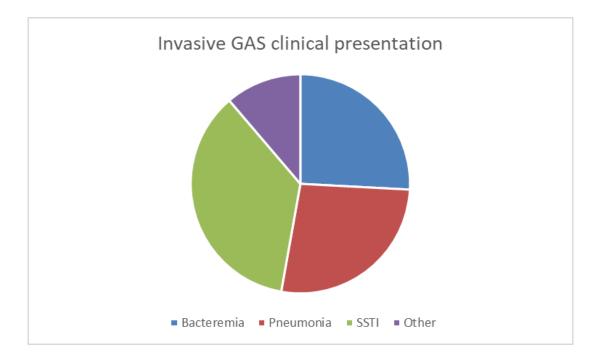
Including age, collection site, clinical presentation

Bacterial isolate whole genome sequencing (performed with ONT) *emm*-type

Age distribution of patients with invasive and non-invasive GAS

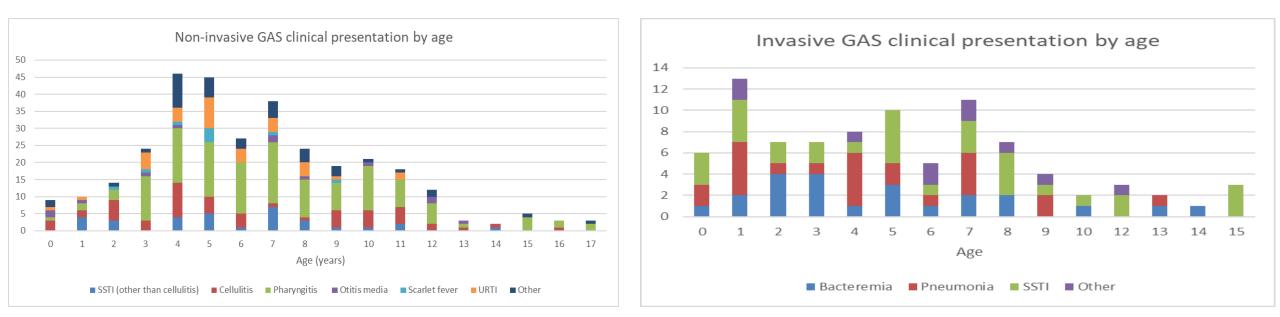


	Overall	Non-invasive GAS	Invasive GAS
	(n=408)	(n=319)	(n=89)
Age in years, median (IQR)	6 (4, 8.5)	6 (4, 9)	5 (2, 7)


Characteristics of patients with invasive and non-invasive GAS

	Overall (n=408)	Non-invasive GAS (n=319)	Invasive GAS (n=89)
Male sex, N (%)	226 (55%)	176 (55%)	50 (56%)
Underlying Medical Conditions, N (%)	147 (36%)	119 (37%)	28 (46%)
Eczema / Skin Condition	40 (10%)	36 (11%)	4 (4%)
Asthma / Resp	13 (3%)	12 (4%)	1 (1%)
Developmental	20 (5%)	12 (4%)	8 (9%)
Malignancy / Transplant	12 (3%)	10 (3%)	2 (2%)

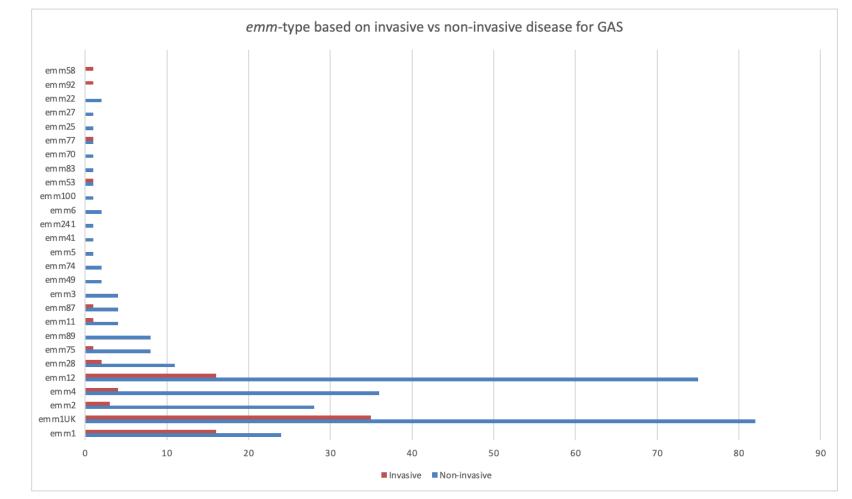
Clinical presentation of GAS



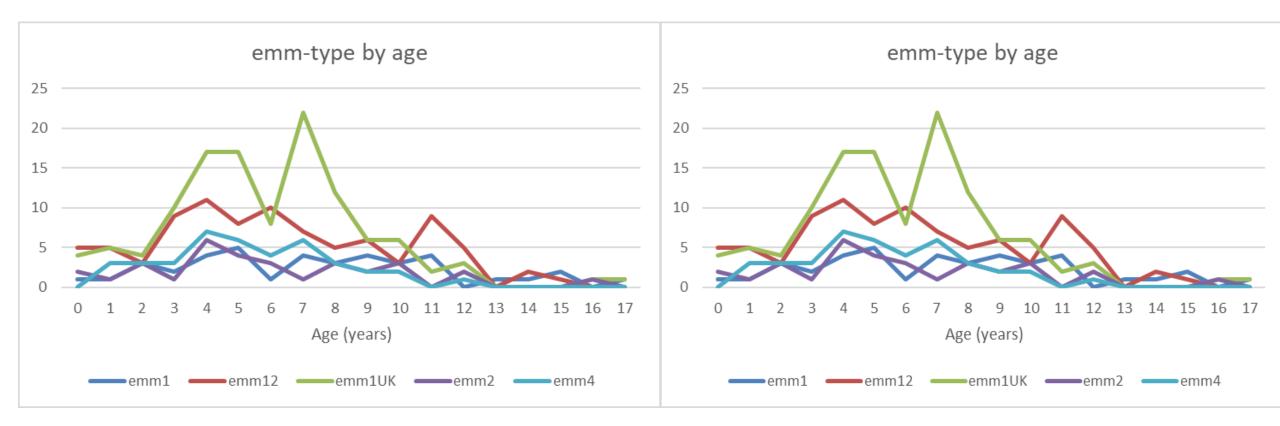
Total non-invasive isolates88WGS completed81

Total invasive isolates	324
WGS completed	291

Clinical presentation of GAS (2)


emm-type based on clinical presentation (invasive vs non-invasive)

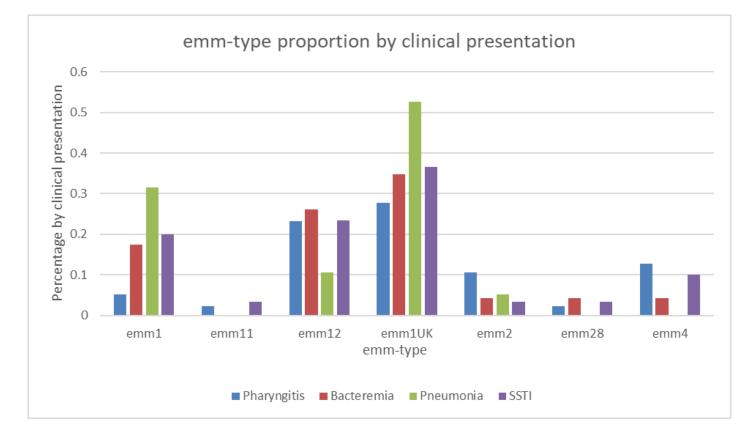
Top 3 invasive *emm*-types:


- 1. emm1UK
- 2. emm12
- 3. emm1

Top 3 non-invasive *emm*-types:

- 1. emm1UK
- 2. emm12
- 3. emm2 (emm4, emm1)

Most common emm-type distribution by age



Proportion of *emm***-type by clinical presentation**

Similar proportions observed with few exceptions:

- Decreased *emm*1 among pharyngitis
- Decreased *emm*12 among patients presenting with pneumonia
- Increased *emm*1UK among patients presenting with pneumoniae

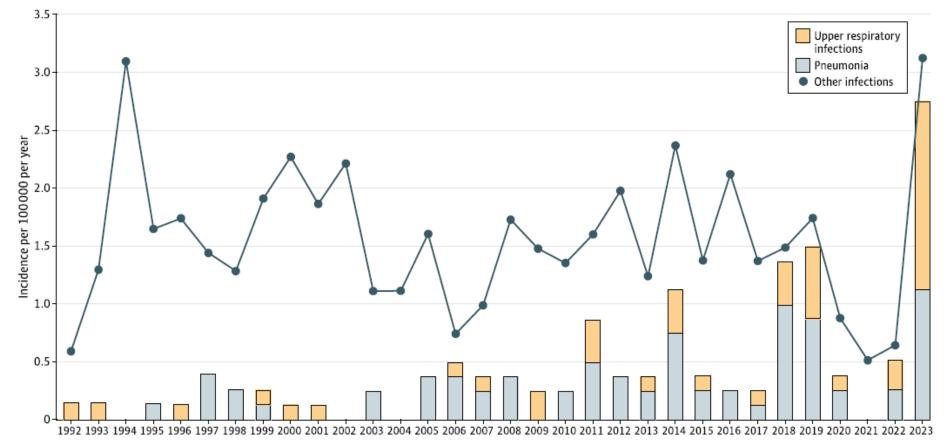
Conclusion

*emm*1UK and *emm*12 were present in a similar proportion for invasive and non-invasive isolates

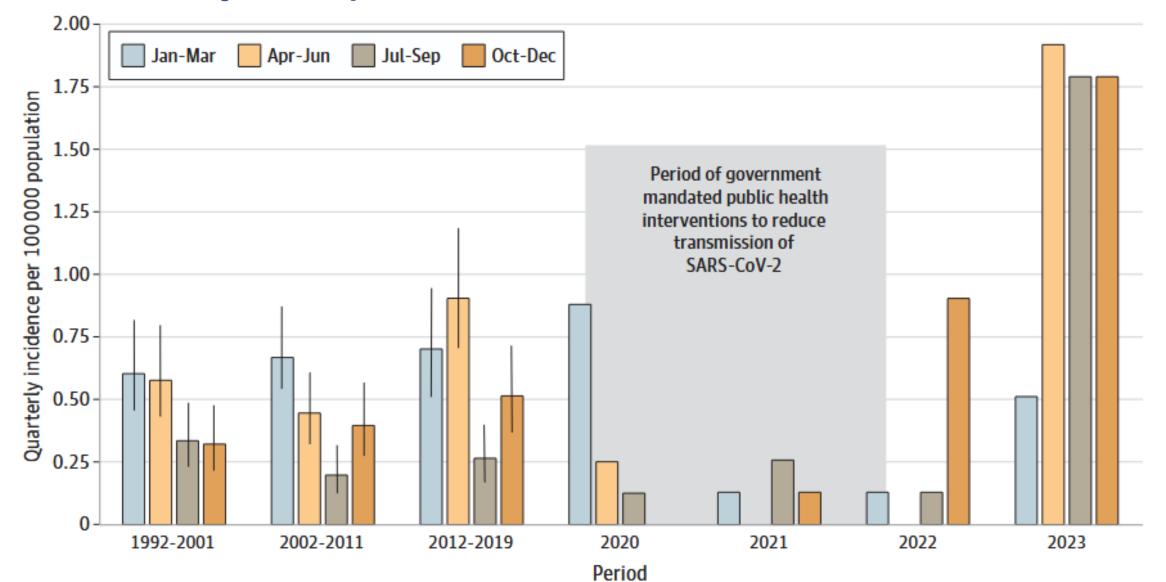
emm1UK predominate lineage in both clinical cohorts

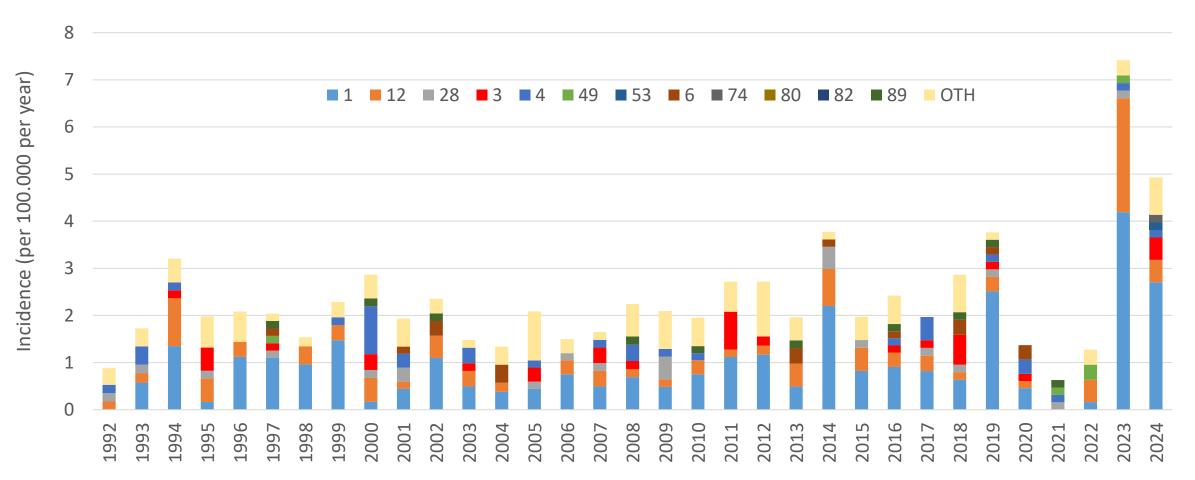
*emm*1 was present in invasive isolates more than non-invasive isolates e.g. Few emm1 isolates among children with pharyngitis

*emm*2 and *emm*4 was present in higher amounts among non-invasive isolates e.g. Few *emm*2/*emm*4 invasive isolates were observed

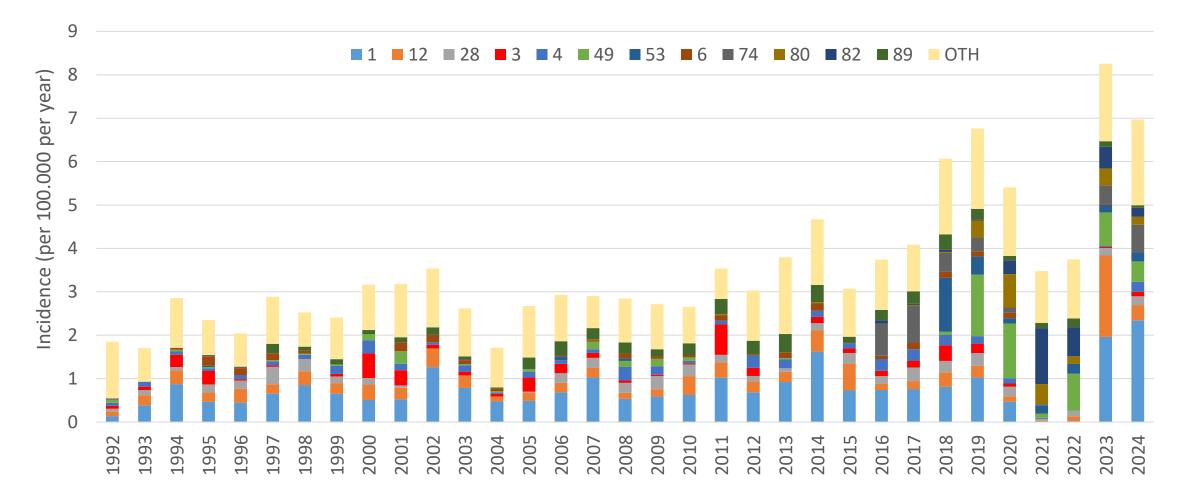


TIBDN and iGAS Surveillance

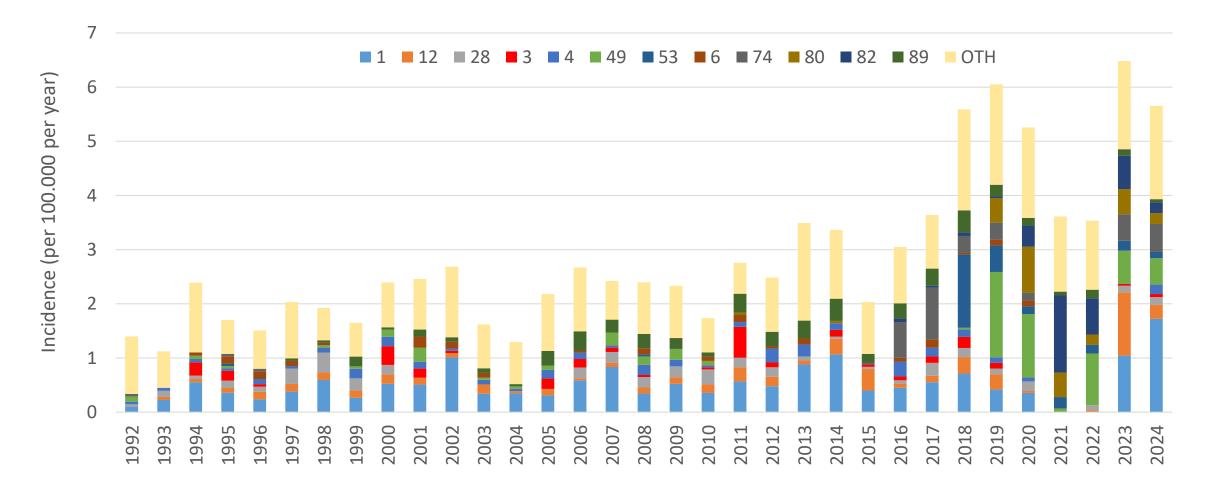

Allison McGeer Professor, Laboratory Medicine and Pathobiology Dalla Lana School of Public Health University of Toronto Senior Clinician Scientist, Lunenfeld Tanenbaum Research Institute, Sinai Health System


Incidence of pediatric invasive GAS disease, Toronto/Peel, 1992-2023

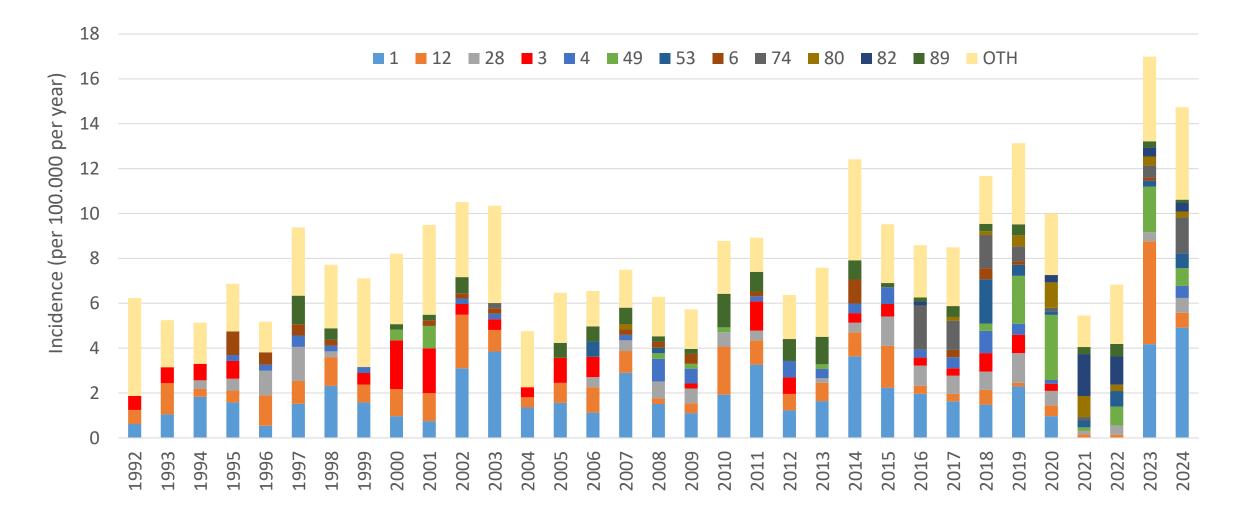
Seasonality of pediatric iGAS disease, Toronto/Peel, 1992-2023



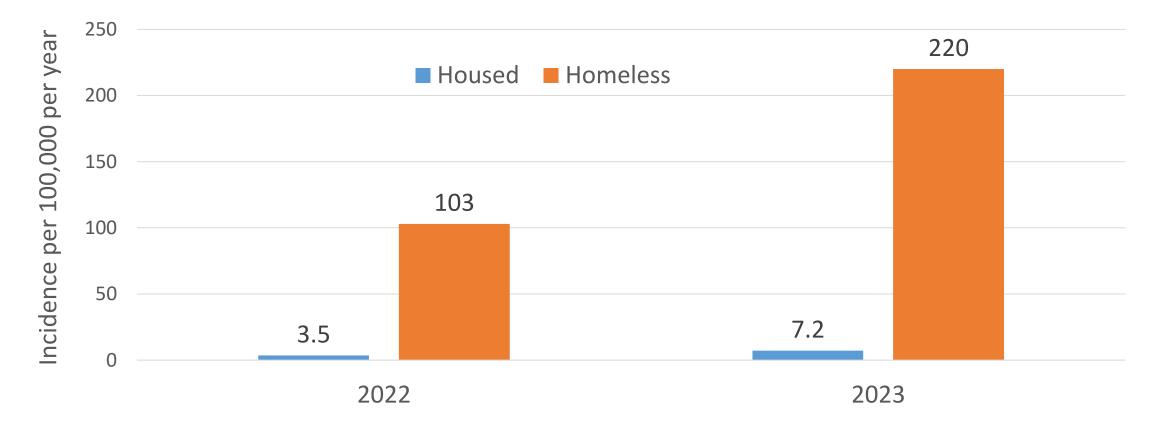
Incidence of iGAS, Toronto/Peel, Children (<15 years), 1992-2024



92.8% of emm types are included in the 30-valent GAS vaccine


Incidence of iGAS, Toronto/Peel, All ages, 1992-2024

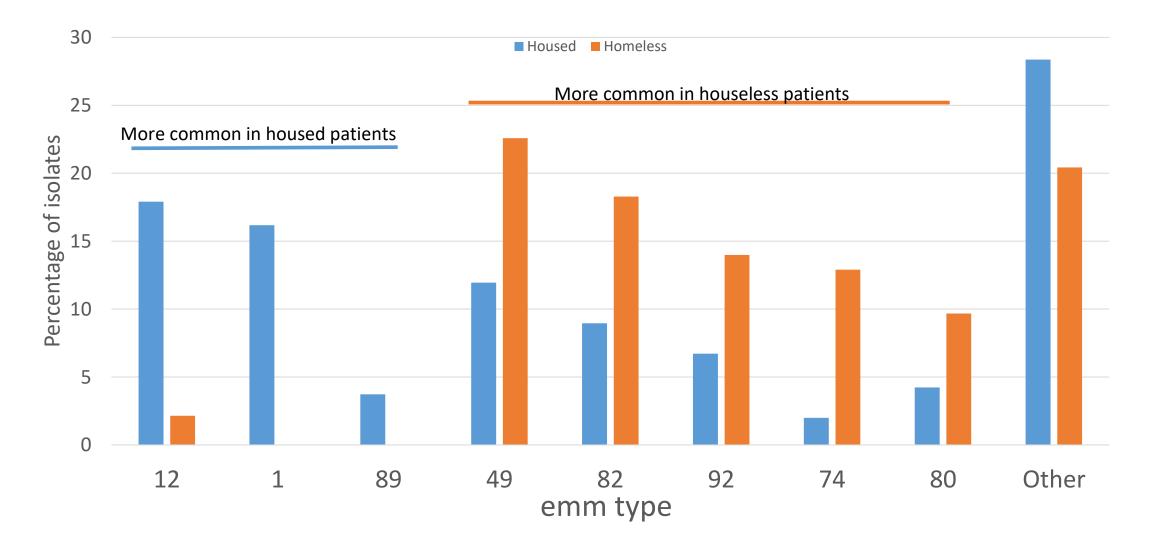
Incidence of iGAS, Toronto/Peel, Adults aged 15-64 years, 1992-2024


Incidence of iGAS, Toronto/Peel, Older adults (≥65 years), 1992-2024

What do you think will happen to iGAS in the next decade?

- 1. The current post-pandemic iGAS increase will settle, and the incidence will return to pre-pandemic levels
- 2. iGAS incidence will stabilize at or near 2024 levels
- 3. iGAS incidence will continue to increase
- 4. We will have a vaccine in less than 10 years, and iGAS will decline when a vaccine program is introduced.

Incidence of iGAS, housed and houseless adults, Toronto/Peel, 2022-2023


Characteristics of iGAS, housed and houseless adults, Toronto/Peel, 2022-2023

	Housed	Homeless		
	(n=408)	(n=94)	Odds Ratio ^α (95%Cl)	P-value
Age in years; median (IQR)	58 y (42-73)	47 (37-60)	-	0.008
Sex (n,% male)	256 (62.7)	68 (72.3)	-	0.10
Underlying Medical Conditions	N (%)	N (%)		
Diabetes mellitus	93 (22.8)	16 (17.2)		0.45
Pulmonary	61 (15.0)	11 (11.8)		0.81
Cardiac	94 (23.0)	8 (8.6)		0.10
Kidney	60 (14.7)	6 (6.4)		0.18
Autoimmune	28 (6.9)	0 (0.0)	NE	0.008
Immunocompromise	83 (20.3)	5 (5.3)	0.28 (0.11-0.72)	0.008
Substance Use				
Alcoholism	57 (14.0)	22 (23.7)		0.09
Current Smoker	88 (21.6)	50 (53.8)	3.49 (2.15-5.67)	< 0.001
Intravenous Drug Use	30 (8.1)	33 (35.9)	5.15 (2.84-9.32)	< 0.001
Infection Source and Risk Factors				
Acute Respiratory Illness in the Last 2 Weeks	25 (6.1)	2 (2.2)		0.17
Infection related to Healthcare or Delivery	23 (5.6)	3 (3.2)		0.46
Case related to another iGAS case	6 (1.7)	1 (1.6)		0.99
Recent Soft Tissue Trauma	84 (22.0)	20 (25.3)		0.76
Non Intact Skin	72 (17.6)	40 (43.0)	4.39 (2.60-7.40)	< 0.001

Characteristics of iGAS, housed and houseless adults, Toronto/Peel, 2022-2023

	Housed	Homeless	Odds Ratio ^α	
	(n=408)	(n=94)	(95%CI)	P-value
Primary Clinical Diagnosis				
Soft Tissue Infection	192 (47.1)	58 (61.7)	1.81 (1.13-2.90)	0.01
Bacteremia without Focus	67 (16.4)	5 (5.3)	0.34 (0.13-0.87)	0.02
Upper Respiratory Tract Infection	44 (10.8)	3 (3.2)	0.25 (0.08-0.84)	0.023
Pneumonia	42 (10.3)	5 (5.3)		0.19
Arthritis or Bursitis	31 (7.6)	7 (7.4)		0.70
Osteomyelitis	9 (2.2)	9 (9.6)	4.65 (1.73-12.5)	0.002
Endocarditis	1 (0.2)	5 (5.3)	23.4 (2.56-213)	0.005
Other	19 (4.7)	1 (1.1)		0.16
Severity of Presentation				
Streptococcal Toxic Shock Syndrome	67 (16.4)	5 (5.3)	0.33 (0.13-0.85)	0.022
Necrotizing Fasciitis	36 (8.8)	6 (6.4)		0.48
Treatment/Outcome				
Hospitalized	370 (90.7)	81 (86.2)		0.59
Admitted to ICU	112 (27.5)	16 (17.0)		0.07
Died	69 (16.9)	4 (4.3)	0.31 (0.11-0.88)	0.03

Emm type distribution in iGAS Housed vs. houseless patients, Toronto/Peel, 2022-2023

In Sum

- Most of the pandemic associated decrease in iGAS was associated with reduced transmission of *emm*1, which is more common in children than in adults
- The incidence of iGAS appears to be increasing
- Homeless adults are more than 30x more likely to develop iGAS compared to housed adults
- The most advanced GAS vaccine in development covers >90% of strains causing iGAS in children, and about 75% of all strains

