

Cohorting in Acute Care Facilities

February 12, 2013

Agency for Health Protection and Promotion Agence de protection et de promotion de la santé

Setting the Context

- What brought us to hold this session?
- Acute Respiratory Infection (ARI) survey
- Cohorting when and why
- The politics of cohorting
- Q & A

What brought us here?

- Late December 2012 through early January 2013- surge of ARI cases presenting to hospitals
- January 9, 2013- Public Health Ontario conducts ARI survey with hospitals
- ARI surge was more problematic in some areas than in others
- Patient transfers and cohorting identified as two significant issues

ARI Survey

- Phone survey asked hospitals about the ARI surge and what help they needed
- Resulted in patient transfer algorithm to address repatriation
- Cohorting also identified as an issue

Patient Transfer Algorithm

 January 24 – MOHLTC distributes algorithm to help with repatriation issue

ARI in Acute Care Phone Survey

January 9, 2013

Agency for Health <u>Protection and Promotion</u> Agence de protection et de promotion de la santé

Ρ	Public Health OntarioSanté publique OntarioPARTNERS FOR HEALTHPARTENAIRES POUR LA SANTE		Number of admissions currently with ARI waiting for confirmation of infectious agents	
	42 –	1	Durham, Toronto	
	40 -	Total # of sites in survey	- 120	
	38 -		- 120	
	36 -	# of sites with missing d	ata = 13	
	34 -		Ottawa	
ons	32 -	Total = 573	25 th percentile = 0	
	30 -		Iviississauga	
issi	28	Lowest = 0	Median = 1	
gm	$\frac{26}{24}$			
fa	$24 \\ 22 $	Highest = 41	75 th percentile = 7	
o Ji	20 -			
Jbe	18 -			
Iun	16 -			
Ζ	14 -			
	12 -			
	10 -			
	8 -			
	6 -			
	4 -			
	2 -			
	0 +	·····		
	-	1 5 9 13 17 21 25 29 33	3/ 41 45 49 53 5/ 61 65 69 /3 // 81 85 89 93 9/ 101 105	

Responding Sites

Number of admissions with influenza A

42 -	Kingston
40 - 38 -	Total # of sites in survey = 120
36 - 34 -	# of sites with missing data = 19
32 - SL 30 -	Total = 241 25 th percentile = 0
01521 - 28 - 26 - 26 - 26 - 26 - 26 - 26 - 26	Lowest = 0 Median = 0
24 - 22 -	Highest = 4075th percentile = 2
20 - 20 - 18 -	
16 - 14 -	
12 -	
10 - 8 -	
6 -	
4 - 2 -	
0 -	1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10

Responding Sites

Number of admissions with influenza B

Iotal # of sites in su	rvey = 120	
# of sites with missi	ng data = 22	
Total = 8	25 th percentile = 0	
Lowest = 0	Median = 0	Ottawa, Kingston
Highest = 2	75 th percentile = 0	
		Ottawa London
		Cambridge areas

Number of admissions with ARI (not influenza A or B)

	120	Ottawa
Number of admissions	110	Total # of sites in survey = 120
	100	# of sites with missing data = 26
	90	Total = 256 25 th percentile = 0
	80	Lowest = 0 Median = 0
	70	Highest = 11775th percentile = 2
	50	
	40	Toronto
	30	North Eastern Ontario
	20	
	10	London, Cambridge
	0	
		1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93
		Responding Sites

Number of sites

Patient Flow Rate in ER

Total # of sites in survey = 120 # of sites with missing data = 4 26 24 24 24 22 21 22 20 18 16 16 14 12 10 8 8 6 4 2 0 No difference in Patient flow Movement to Other (with Movement to ER at a severe ER on bypass patient flow normal for time of units slower than units greatly standstill comments) reduced normal year

Patient Flow Rate

Number of patients

Number of Patients in ER with ARI Waiting for Lab Confirmation and Placement in Private Room

Responding Sites

Geographic Variability in Cohorting Practices

Summary of ARI Survey

- There was a large number of patients with ARI in acute care facilities
- Large number of patients with ARI waiting in ER
- Significant geographical variability
- Cohorting is problematic without a laboratory diagnosis
- Survey was a very effective way to get a picture of the provincial landscape in short order
- Many thanks to all participants

PIDAC's Routine Practices/Additional Precautions Best Practice Document

- Cohorting is acceptable in *some* cases where patients/residents are known to be infected with the same microorganism (lab testing).
- In long-term care homes, spatial separation of residents within their bed space, dependant on a risk assessment of the resident, is recommended

Applications of Cohorting

- Nosocomially acquired cases in an outbreak
 - to interrupt transmission that is happening in the institution

- Cohorting of admitted cases of ARI or gastro
 - to prevent transmission from admitted cases to others

Criteria for Cohorting

- When single rooms are not available or during outbreak situations
- Should be considered in outbreaks when transmission is documented and continues despite alternative interventions
- Should be considered when available facilities and staffing allow for the establishment of cohorting
- Should never compromise infection control practices and Additional Precautions must be applied individually for each patient/resident within the cohort.

Types of Cohorting

Patient Cohorting

- applicable in acute care settings for control of transmission of microorganisms or outbreaks
- In long-term care homes, movement of residents to achieve geographical cohorting is not appropriate

Staff Cohorting

applicable in all health care facilities

Patient/Resident Cohorting

- The placement and care of individuals who are infected or colonized with the <u>same microorganism</u> in the same room
 - This means lab confirmation!!
 - This does NOT mean you can cohort everyone together that has general acute respiratory infection symptoms
 - This does NOT mean you can cohort VRE with MRSA or influenza with RSV
- Placing those who have been exposed together to limit risk of further transmission

Patient/Resident Cohorting

- In long-term care homes, resident cohorting does not imply that a resident is moved out of his/her room
- Assess patients/residents for the duration of colonization/infection (e.g. ARO's)

Staff Cohorting

- Assigning specified health care providers to care only for patients/residents known to be colonized or infected with the same microorganism.
- Can be used in addition to patient/resident and geographical cohorting by assigning dedicated staff to care for either those patients/residents who are infected or colonized, or those who are not.
- Can be used during outbreaks to reduce the potential for cross-infection between patients/residents by limiting the number of staff interacting with patients/residents.

PARTNERS FOR HEALTH

PARTENAIRES POUR LA SANTÉ

The Power and Pitfalls of Cohorting

Gary E Garber MD FRCPC FACP

Medical Director IPAC

Public Health Ontario

Agency for Health <u>Protection and Promotion</u> Agence de protection et de promotion de la santé

Key Advantages

- Segregation of known infectious patients
- Geographic co-localization
- Maximize limited isolation rooms
- Separation of defined patient care workers
- Sense that there is "control" of the situation
- Perhaps easier monitoring of impact

Pitfalls

- Movement of patients and relocation
- Initially lose bed space as the cohort location is defined and populated
- Diagnosis may be presumptive, uncertain or disputed
- Infection Control staff may be targeted as the "cause" of elective admission disruption.
- Communications with the Medical staff is pivotal for success

Evidence For Cohorting

- No randomized, controlled trials comparing single-room isolation and cohorting
 - Most studies use uncontrolled before-and-after designs and include cohorting as part of a bundle of interventions
- In general, there is a theoretical risk of transmission between hospital roommates
 - Number of hospital roommate exposures per day associated with increased risk of MRSA and VRE and CPE (Lowe et al ICHE 2013) colonization or infection¹
 - Facilities that have moved to a location with single rooms for all patients have shown reductions in rates of MRSA,² gram-negative bacilli,² and *Clostridium difficile* infection (CDI)³

Evidence For Cohorting

- Evidence for cohorting is limited
 - Relatively few studies
 - Poor methodological quality
- There is some weak evidence that cohorting may help to control outbreaks, particularly for RSV and MDR-GNB
- However, different pathogens have similar clinical presentations, particularly respiratory and GI illnesses, so it is essential to have a laboratory-confirmed diagnosis before cohorting

Solutions

- When cohorting is being considered, key admin and clinical staff must be involved in the discussion, decision, and implementation.
- A communication strategy is required and needs consistent and continuous messaging.
- Strong and unwavering senior admin support is required for success.

How to deal with uncertainty?

- Consider 3 cohorts:
 - a) Known infections
 - b) Exposed or presumed infectious
 - c) Non-exposed groups

- For Influenza considering ILI as the diagnosis may be problematic
- Proper Routine Practice will suffice to prevent cross contamination

PARTENAIRES POUR LA SANTÉ

Thank –you

Public Health Ontario thanks all of you for participating in the ARI survey

PARTNERS FOR HEALTH

Public

PARTENAIRES POUR LA SANTÉ

SCAN OF THE LITERATURE ON COHORTING

www.oahpp.ca

Acute Respiratory Infection (ARI)

- Consistent evidence that cohorting infants with RSV reduces nosocomial transmission⁴
- No evidence for cohorting patients with other viruses⁵
- Important to have a microbiologic diagnosis
 - A study of infants presenting with bronchiolitis found RSV in 28 of 50, influenza A in 3, rhinovirus in 9, and other picornaviruses in 2⁶
 - If all infants in their sample had been cohorted, there would have been a risk of cross-infection with influenza A and other respiratory viruses

MRSA and VRE

- Decreased prevalence when patients are moved to a separate cohort ward^{7,8}
- Some studies have reported reductions in MRSA and VRE after implementation of cohorting, in combination with other measures such as decolonization⁹ or enhanced environmental cleaning¹⁰
- Other studies have reported that cohorting did not reduce transmission^{11,12}

Multi-drug Resistant Gram Negative Bacteria

- Carbapenem-resistant Klebsiella pneumoniae¹³
 - There was no change with implementation of single-room isolation, but there was a significant decrease in incidence after a cohorting policy was initiated
 - Cohorting was implemented simultaneously with enhanced environmental cleaning and screening of contacts
- Outbreak of MDR Serratia marcescens¹⁴
 - Transmission stopped only after implementation of patient cohorting
 - The cohorting policy led to an increase in nurse-to-patient ratio that may have also contributed to the outbreak ending

GI Pathogens

 No studies of isolation or cohorting for patients with *Clostridium difficile* infection¹⁵

References

- 1. Hamel M, Zoutman D, O'Callaghan C. Exposure to hospital roommates as a risk factor for health care-associated infection. *Am J Infect Control* 2010;38(3):173-81.
- 2. Bonizzoli M, Bigazzi E, Peduto C, Tucci V, Zagli G, Pecile P, et al. Microbiological survey following the conversion from a bay-room to single-room intensive care unit design. *J Hosp Infect* 2011;77(1):84-6.
- 3. Heddema ER, van Benthem BHB. Decline in incidence of *Clostridium difficile* infection after relocation to a new hospital building with single rooms. *J Hosp Infect* 2011;79(1):93-4.
- 4. Groothuis J, Bauman J, Malinoski F, Eggleston M. Strategies for prevention of RSV nosocomial infection. *J Perinatology* 2008;28(5):319-23.
- 5. Jefferson T, Del Mar C, Dooley L, Ferroni E, Al-Ansary LA, Bawazeer GA, et al. Physical interventions to interrupt or reduce the spread of respiratory viruses: a Cochrane review. *Health Technol Asses* 2010;14(34):347-476.
- 6. Ong GM, Wyatt DE, O'Neill HJ, McCaughey C, Coyle PV. A comparison of nested polymerase chain reaction and immunofluorescence for the diagnosis of respiratory infections in children with bronchiolitis, and the implications for a cohorting strategy. J Hosp Infect 2001;49(2):122-8.
- 7. Gilroy SA, Miller Stahl B, Noonan C, Susman R, Johnson L, Kullman M, et al. Reduction of hospital-acquired methicillinresistant *Staphylococcus aureus* infection by cohorting patients in a dedicated unit. *Infect Control Hosp Epidemiol* 2009;30(2):203-5.
- 8. Jochimsen EM, Fish L, Manning K, Young S, Singer DA, Baker R, et al. Control of vancomycin-resistant enterococci at a community hospital: efficacy of patient and staff cohorting. *Infect Control Hosp Epidemiol* 1999;20(2):106-9.

References

- 9. Rumbak MJ, Cancio MR. Significant reduction in methicillin-resistant *Staphylococcus aureus* ventilator-associated pneumonia associated with the institution of a prevention protocol. *Crit Care Med* 1995;23(7):1200-3.
- 10. Sample ML, Gravel D, Oxley C, Toye B, Garber G, Ramotar K. An outbreak of vancomycin-resistant enterococci in a hematology-oncology unit: control by patient cohorting and terminal cleaning of the environment. *Infect Control Hosp Epidemiol* 2002;23(8):468-70.
- 11. Mascini EM, Troelstra A, Beitsma M, Blok HE, Jalink KP, Hopmans TE, et al. Genotyping and preemptive isolation to control an outbreak of vancomycin-resistant *Enterococcus faecium*. *Clin Infect Dis* 2006;42(6):739-46.
- 12. Cepeda JA, Whitehouse T, Cooper B, Hails J, Jones K, Kwaku F, et al. Isolation of patients in single rooms or cohorts to reduce spread of MRSA in intensive-care units: prospective two-centre study. *Lancet* 2005;365(9456):295-304.
- 13. Cohen MJ, Block C, Levin PD, Schwartz C, Gross I, Weiss Y, et al. Institutional control measures to curtail the epidemic spread of carbapenem-resistant *Klebsiella pneumoniae*: a 4-year perspective. *Infect Control Hosp Epidemiol* 2011;32(7):673-8.
- 14. Maragakis LL, Winkler A, Tucker MG, Cosgrove SE, Ross T, Lawson E, et al. Outbreak of multidrug-resistant *Serratia marcescens* infection in a neonatal intensive care unit. *Infect Control Hosp Epidemiol* 2008;29(5):418-23.
- 15. Hsu J, Abad C, Dinh M, Safdar N. Prevention of endemic healthcare-associated *Clostridium difficile* infection: reviewing the evidence. *Am J Gastroenterol* 2010;105(11):2327-39.