Interim Guidance for Infection Prevention and Control of SARS-CoV-2 Variants of Concern for Health Care Settings

February 2021
Public Health Ontario

Public Health Ontario is a Crown corporation dedicated to protecting and promoting the health of all Ontarians and reducing inequities in health. Public Health Ontario links public health practitioners, frontline health workers and researchers to the best scientific intelligence and knowledge from around the world.

Public Health Ontario provides expert scientific and technical support to government, local public health units and health care providers relating to the following:

- communicable and infectious diseases
- infection prevention and control
- environmental and occupational health
- emergency preparedness
- health promotion, chronic disease and injury prevention
- public health laboratory services

Public Health Ontario's work also includes surveillance, epidemiology, research, professional development and knowledge services. For more information, visit www.publichealthontario.ca

How to cite this document:

Public Health Ontario acknowledges the financial support of the Ontario Government.

©Queen’s Printer for Ontario, 2021
Disclaimer

Disclaimer for Best Practice Documents:

This document was developed by the Provincial Infectious Diseases Advisory Committee on Infection Prevention and Control (PIDAC-IPC). PIDAC-IPC is a multidisciplinary scientific advisory body that provides evidence-based advice to Public Health Ontario (PHO) regarding the prevention and control of health care-associated infections. PIDAC-IPC’s work is guided by the best available evidence and updated as required. Best practice documents and tools produced by PIDAC-IPC reflect consensus on what the committee deems prudent practice and are made available as a resource to public health and health care providers. PHO assumes no responsibility for the results of the use of this document by anyone.

This document may be reproduced without permission for non-commercial purposes only and provided that appropriate credit is given to Public Health Ontario. No changes and/or modifications can be made to this document without explicit written permission from Public Health Ontario.

NOTES: This document is intended to provide best practices only.
Health care settings are encouraged to work towards these best practices in an effort to improve quality of care.

Provincial Infectious Diseases Advisory Committee (PIDAC)
Tel: 647-260-7100 Email: pidac@oahpp.ca
Authors/Contributors

Public Health Ontario would like to acknowledge the contribution and expertise of the following individuals who participated in the development of this document.

PIDAC-IPC Members:

Dr. Matthew Muller, Chair
Medical Director, Infection Prevention and Control, St. Michael’s Hospital, Toronto

Maria Louise Azzara
Infection Prevention and Control Specialist, York Region Community and Health Services, Richmond Hill

Natalie Bruce
Manager, Infection Prevention and Control, The Ottawa Hospital, Ottawa

Dr. William Ciccotelli
Infectious Disease and Medical Microbiology, Grand River Hospital, Kitchener

Zahir Hirji
Manager, Privacy & Risk Management, Scarborough Health Network, Toronto

Dr. Susy Hota
Medical Director, Infection Prevention and Control, University Health Network, Toronto

Dr. Dominik Mertz
Associate Professor, Medical Director, Infection Control, Hamilton Health Sciences, Hamilton

Vydia Nankoosingh
Manager, Infection Prevention and Control, Scarborough Health Network, Toronto

Dariusz Pajak
Infection Control Coordinator, Sunnybrook Health Sciences Centre, Toronto

Dr. Herveen Sachdeva
Associate Medical Officer of Health, Toronto Public Health, Toronto

Laurie Streitenberger
Senior Manager, Infection Prevention and Control, The Hospital for Sick Children, Toronto

Ex-officio Members:

Sandra Callery
Senior Advisor, Health Protection, Science and Public Health, PHO

Melissa Helferty
Manager, Infectious Diseases Policy and Programs, Ministry of Health

Dr. Samir Patel
Clinical Microbiologist and Deputy Chief, Laboratory Research, PHO

Dr. Susy Hota
Medical Director, Infection Prevention and Control, University Health Network, Toronto

Dr. Dominik Mertz
Associate Professor, Medical Director, Infection Control, Hamilton Health Sciences, Hamilton

Vydia Nankoosingh
Manager, Infection Prevention and Control, Scarborough Health Network, Toronto

Dariusz Pajak
Infection Control Coordinator, Sunnybrook Health Sciences Centre, Toronto

Dr. Herveen Sachdeva
Associate Medical Officer of Health, Toronto Public Health, Toronto

Laurie Streitenberger
Senior Manager, Infection Prevention and Control, The Hospital for Sick Children, Toronto

Dr. Nikhil Rajaram
Provincial Physician, Occupational Health and Safety Branch, Ministry of Labour, Training and Skills Development

Dr. Michelle Science
Infection Prevention and Control Physician, PHO
Expert Advisors:

Dr. Jennie Johnstone
Medical Director, Infection Prevention and Control, Sinai Health, Toronto

Dr. Kevin Katz
Medical Director, Infection Prevention and Control, North York General Hospital, Toronto

PHO Staff:

Dr. Maureen Cividino
Infection Prevention and Control Physician

Mabel Lim
Program Infection Prevention and Control Specialist

Dr. Jennifer Robertson
Manager, Research, Evaluation and CQI Support

Jeff Smith
Research Coordinator
Contents

Glossary of Terms ... 2

Preamble ... 4

1. Background ... 5

2. IPAC Recommendations Related to SARS-CoV-2 Variants of Concern ... 7

 2.2 Inter-Facility Transfer of Patients with VOC .. 7

 2.3 Patient Placement ... 8

 2.4 Personal Protective Equipment .. 8

 2.5 Duration of Precautions .. 9

 2.6 Other IPAC Measures ... 9

 2.7 Environmental Cleaning .. 11

 2.8 Heating, Ventilation and Air Conditioning .. 11

 2.9 Outbreak Management for VOCs .. 12

Appendix A: Summary of Recommendations .. 18

References .. 21

List of Tables

Table 1. Epidemiology of SARS-CoV-2 Variants of Concern .. 13
Table 2. IPAC Concerns of SARS-CoV-2 Variants of Concern .. 14
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGMP</td>
<td>aerosol-generating medical procedure</td>
</tr>
<tr>
<td>COVID-19</td>
<td>coronavirus disease 2019</td>
</tr>
<tr>
<td>HVAC</td>
<td>heating, ventilation and air conditioning</td>
</tr>
<tr>
<td>IPAC</td>
<td>infection prevention and control</td>
</tr>
<tr>
<td>NVSC2</td>
<td>non-variant SARS-CoV-2</td>
</tr>
<tr>
<td>PPE</td>
<td>personal protective equipment</td>
</tr>
<tr>
<td>SARS-CoV-2</td>
<td>severe acute respiratory syndrome coronavirus 2</td>
</tr>
<tr>
<td>VOC</td>
<td>variant of concern</td>
</tr>
</tbody>
</table>
Glossary of Terms

Aerosol: Small droplet of moisture that may carry microorganisms. Aerosols may be light enough to remain suspended in the air for short periods of time, allowing inhalation of the microorganism.

Audit: A systematic and independent examination to determine whether quality activities and related results comply with planned arrangements, are implemented effectively and are suitable to achieve objectives.

Backward contact tracing: The process of retrospectively identifying the source of infection of the case under investigation in order to identify further cases and contacts. Backwards contact tracing involves searching for the source of the exposure to the case under investigation. Exposure of the case to any known COVID-19 case or symptomatic individual and a travel history over the previous 14 days should be sought. If a potential source case is identified, forward tracing from the newly identified source case may identify other positive cases. Backwards contact tracing for inpatients requires collaboration between infection prevention and control, occupational health and public health (to identify exposures prior to hospitalization). See also Forward contact tracing.

Cleaning: The physical removal of foreign material (e.g., dust, soil) and organic material (e.g., blood, secretions, excretions, microorganisms). Cleaning physically removes rather than kills microorganisms. It is accomplished with water, detergents and mechanical action.

Cohorting: The sharing of a room or ward by two or more clients/patients/residents who are either colonized or infected with the same microorganism; or the sharing of a room or ward by colonized or infected clients/patients/residents who have been assessed and found to be at low risk of dissemination, with roommates who are considered to be at low risk for acquisition.

Contact Precautions: Precautions used in addition to Routine Practices to reduce the risk of transmitting infectious agents via contact with an infectious person.

Disinfection: The inactivation of disease-producing microorganisms. Disinfection does not destroy bacterial spores. Medical equipment/devices must be cleaned thoroughly before effective disinfection can take place.

Droplet transmission: Transmission that occurs when the droplets that contain microorganisms are propelled a short distance (within 2 metres) through the air and are deposited on the mucous membranes of another person, leading to infection of the susceptible host. Droplets can also contaminate surfaces and contribute to Contact transmission.

Forward contact tracing: The process of identifying and quarantining contacts who were exposed to the case under investigation, in order to stop further transmission. Forward contact tracing involves identifying individuals with unprotected exposure to a case during the case’s infectious period. See also Backward contact tracing.
Hand hygiene: A general term referring to any action of hand cleaning. Hand hygiene relates to the removal of visible soil and removal or killing of transient microorganisms from the hands. Hand hygiene may be accomplished using an alcohol-based hand rub or soap and running water. Hand hygiene includes surgical hand antisepsis.

Health care provider: Any person delivering care to a patient. This includes, but is not limited to, the following: emergency service workers, physicians, dentists, nurses, respiratory therapists and other health professionals, personal support workers, clinical instructors, students and home health care workers. In some non-acute settings, volunteers might provide care and would be included as health care providers. See also Staff.

Health care setting: Any location where health care is provided, including settings where emergency care is provided, hospitals, complex continuing care, rehabilitation hospitals, long-term care homes, mental health facilities, outpatient clinics, community health centres and clinics, physician offices, dental offices, offices of other health professionals and home health care.

Personal protective equipment (PPE): Clothing or equipment worn for protection against hazards.

Staff: Anyone conducting activities in settings where health care is provided, including but not limited to, health care providers.

Variant of concern (VOC): A mutated pathogen that is considered to have concerning epidemiological, immunological or pathogenic properties as a result of the mutation(s). A variant of concern may have increased transmissibility, more severe clinical presentation, higher false-negative diagnostic test results, and/or reduced neutralization by convalescent sera or vaccine.
Preamble

This document provides interim guidance for how infection prevention and control (IPAC) practices in Ontario health care settings should be modified in light of the emergence of B.1.1.7 in Ontario, and the potential for the emergence of other known or as yet unknown variants of concern (VOCs). The IPAC approaches to coronavirus disease 2019 (COVID-19) in Ontario health care settings are based on implementation of a hierarchy of control measures as well as the use of Routine Practices and Additional Precautions. However, the way that these measures have been operationalized varies widely depending on the specific setting (e.g., acute care hospitals, complex continuing care and rehabilitation hospitals, long-term care homes, and outpatient settings), and by the incidence of COVID-19 in different regions, with wide variation in disease burden across the province. As such it is outside the scope of this document to review all IPAC measures used to reduce risk. Instead we address if any of these measures need to be altered or enhanced based on our current understanding of these new VOCs. Information is emerging rapidly and this guidance may change as new information becomes available.

This document assumes that all health care settings have IPAC support and resources appropriate to the type of setting. It is also assumed that all health care settings have already implemented IPAC policies and procedures sufficient to effectively prevent the transmission of non-variant severe acute respiratory syndrome coronavirus 2 (NVSC2).

COVID-19 is a community-acquired disease and health care outbreaks occur following introduction of COVID-19 from the community. However, this document does not address public health measures aimed at controlling the new variant. It is clear that the implementation of effective public health measures to control the transmission of COVID-19 in the community is the single most important step that can be taken to protect health care settings from COVID-19, including COVID-19 due to new and emerging variants.
1. Background

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a coronavirus that emerged from China in December 2019 and causes COVID-19. Mutations in the genetic code of the SARS-CoV-2 virus are an expected finding as some degree of genetic change is common in most viruses but are not necessarily associated with increased transmissibility or disease severity. As we have learned from previous pandemics of zoonotic diseases such as influenza, it is anticipated that viral adaptation to the human host will occur, with ongoing mutation and changes in transmissibility and increases or decreases in disease severity.

Recently, public health authorities in several countries have identified three VOCs that may be associated with increased transmissibility. These VOCs include B.1.1.7, 501Y.V2 (B.1.351) and P.1 (501Y.V3) although there are a variety of naming systems for these VOCs (Table 1).

B.1.1.7 was initially identified in the United Kingdom (UK) but has disseminated globally, has been identified in multiple cases in Ontario and with long-term care home outbreaks.

501Y.V2 was first identified in South Africa but has also disseminated globally. Several cases have been identified in Canada, including a non-travel related case recently identified in Ontario, and it is highly likely that additional cases will continue to be identified as surveillance expands.

P.1 was first identified in Brazil and travel-related cases have been identified in other countries. Both the global and local prevalence of these variants is significantly underestimated, however, due to limited use and availability of genetic sequencing in routine COVID-19 diagnosis.

PIDAC has identified the following as key questions that must be answered to understand the potential impact of any new VOC (Table 2):

- For each VOC, is the VOC associated with increased transmissibility compared with NVSC2?
- Do current diagnostic tests have sensitivity for detection of each of the VOC equivalent to that for NVSC2?
- Does infection with each of the VOC result in increased disease severity and higher case fatality as compared to infection with NVSC2?
- Does natural or vaccine-induced immunity to NVSC2 protect against infection and severe disease due to each VOC?

Currently, there are incomplete data available to address these questions, with the most data available on the B.1.1.7 VOC (Table 2). Evidence indicates that the B.1.1.7 VOC is associated with increased transmissibility. Estimates suggest that B.1.1.7 VOC is 36% to 75% more transmissible than NVSC2. In the UK it took only a few months for the B.1.1.7 VOC to rise from <5% of all COVID-19 cases to become the predominant variant accounting for >70% of cases. The initial emergence of B.1.1.7 has been associated with rapid increases of community COVID-19 prevalence and with rapid replacement of NVSC2 with B.1.1.7. However, the re-introduction of lockdown measures in response to the
emergence of B.1.1.7 has been effective at reducing transmission at the population level in several countries, including the UK.12,13

Some PCR-based tests designed to detect the SARS-CoV-2 S-gene fail to do so for B.1.1.7. However, as most PCR-based tests include >1 detection target, these tests can still diagnose COVID-19 in patients with the B.1.1.7 VOC. Tests that fail to detect the S-gene in patients with B.1.1.7 can provide a surrogate method of identifying B.1.1.7 through the detection of S-gene target failure. In the UK following the emergence of B.1.1.7, the detection of S-gene target failure is almost always due to infection with the B.1.1.7 VOC and provides a rapid surrogate to genome sequencing.14,15

Based on preliminary evidence from the UK, B.1.1.7 may be associated with an increase in disease severity but further data are required to confirm this.16 There is no evidence at present that either re-infection or vaccine failure are more common due to B.1.1.7.11,17,18

There is less information available with respect to 501Y.V2 and P.1. but their emergence in South Africa and Brazil, respectively, has been associated with replacement of NVSC219 and rapid increases in COVID-19 incidence20 (Table 2). There is concern about the level of neutralizing antibody titres targeting 501Y.V2 generated by natural immunity following infection with NVSV2 or vaccination with currently available vaccines.21 Reports from some vaccine trials suggest a possible reduction in vaccine efficacy in South Africa following the emergence of 501Y.V2 but the data are preliminary and have not been fully released.17,22-24 Additionally, some of these vaccine trials, as well as data from Brazil, suggest that re-infection with 501Y.V2 or P.1. may occur in individuals previously infected with NVSC2.25

Although all three VOC are associated with increased transmissibility, the mechanism for this increase is not known.4,26,27 Mutations in the viral spike protein are seen in all three VOC. The spike protein is responsible for binding to the ACE-2 receptor on human cells and for viral cell membrane fusion. Potential explanations for increased transmissibility include a higher viral load,28,29 or a shorter incubation period compared to NVSC2.28,29 There is no evidence that there is any difference in the mode(s) of transmission of these VOC different from what is seen for NVSC2.
2. IPAC Recommendations Related to SARS-CoV-2 Variants of Concern

In formulating this guidance, it is important to note that the initial management decisions for patients with suspected or confirmed COVID-19 will need to be made without knowledge of whether the patient is infected with a VOC, as it will take several days to screen for possible variants, and longer to get the sequencing results required to confirm the specific VOC involved. Furthermore, based on the experience with VOC in other countries, their prevalence is likely to increase rapidly once local community transmission is established. In most cases, it will be not be possible, or effective, to target specific IPAC measures only to patients with a confirmed VOC.

2.1 COVID-19 Screening, Diagnosis and Testing

There is already community transmission of B.1.1.7 in Ontario. The burden of disease due to the other known VOCs appears to be low. As long as the pandemic continues, however, additional VOCs are likely to emerge, especially in areas where COVID-19 incidence is high. For these reasons, a travel history remains an important part of the assessment of COVID-19 patients (although local emergence of a novel VOC is also possible). Ongoing sequencing of specimens both related and unrelated to travel will be required for early detection of new and emerging VOCs.

All three recognized VOCs have multiple mutations in the spike protein although only B.1.1.7 is associated with spike protein target failure. Because most diagnostic tests approved for use in Canada either do not use the S gene as a target, or do not target the S gene exclusively, current tests can be used to diagnose COVID-19 in patients with either NVSC2 or any of the currently recognized VOCs—although these tests cannot distinguish between NVSC2 or VOC in most cases. The accuracy of PCR-based tests will need to be reassessed as new VOCs emerge.

Recommendations

1. Currently used PCR-based tests for COVID-19 can continue to be used for diagnosis despite the emergence of the B.1.1.7 and 501Y.V2 VOCs in Ontario.
2. Patients with COVID-19 should be screened for the 501Y mutation and referred for whole genome sequencing based on the criteria for testing provided by the Public Health Ontario*.

* Public Health Ontario has now recommended that all positive specimens be screened for the 501Y mutation and sequenced if positive.30

2.2 Inter-Facility Transfer of Patients with VOC

Inter-facility transfers of COVID-19 patients may be made for medically necessary reasons (e.g., transfer of an acutely ill patient from long-term care to acute care, or transfer of a hospitalized patient from one hospital to another in order to receive specialized surgical services or support care such as extra-
corporeal membrane oxygenation). In other cases, transfers are made to offload pressures in hospitals experiencing COVID-19 surges that compromise their ability to provide quality medical care to patients due to case burden, outbreaks or staff shortages. In this situation, it is not clear whether the risk of ongoing transmission from the case will be increased or reduced through transfer to a safer health care setting.

Recommendations

3. Medically necessary transfers of patients with COVID-19 should continue to occur for patients with a known VOC.

4. For transfers intended to off-load pressures in hospitals experiencing a COVID-19 surge, current regional processes for transfer which include discussions with local hospital IPAC, in consultation with public health, should determine whether transfer can proceed and the IPAC precautions required. Decisions will depend on an understanding of the specific VOC involved, the current epidemiology of the VOC in Ontario, and the status of the sending and receiving facility. However, in most situations necessary transfers should proceed with appropriate precautions and transfers should not be delayed because the patient’s VOC status is unknown.

2.3 Patient Placement

The B.1.1.7 VOC is not known to be associated with COVID-19 re-infection or vaccine failure.4,11,17,18 For 501Y.V2 preliminary data suggest there may be reduced vaccine efficacy and there are anecdotal reports of an increased re-infection risk.24 There is also concern about the possibility of re-infection with P.1.25,31

Recommendations

5. Patients with COVID-19 due to B.1.1.7 can be cohorted with other COVID-19 positive patients (as long as there are no additional contraindications to cohorting).

6. Patients with COVID-19 due to B.1.1.7 can be cohorted with patients who have resolved COVID-19 within the previous 90 days (as long as there are no additional contraindications to cohorting).

7. No recommendation for other VOCs can be made currently - but in the absence of further information patients with a known VOC other than B.1.1.7 should be in a private room whenever possible.

8. The indications for the use of an airborne infection isolation room are the same for patients with VOCs and NVSC2.

2.4 Personal Protective Equipment

There is evidence that B.1.1.7 is more transmissible than NVSC.4,14,27,32-34 It has been suggested that this may be due to a higher viral load in COVID-19 due to B.1.1.7 but results are conflicting.28,29,35 However, there is no evidence suggesting, and no anticipated change in the mode(s) of transmission of COVID-19 caused by B.1.1.7 or any other VOC. In response to the emergence of B.1.1.7, IPAC guidance in the UK
has not changed and PPE recommendations are not different for B.1.1.7. COVID-19 burden in UK communities and health care settings is currently falling in response to the re-introduction of lockdown measures, despite the emergence of this new variant.

Recommendation

9. **There is no recommended change in PPE practices related to the emergence of the B.1.1.7 VOC or other VOCs in Ontario.**

2.5 Duration of Precautions

Currently available epidemiological and virological data suggest that the infective period for patients with mild or moderate COVID-19 and without severe immunocompromise is less than 10 days in almost all cases. The recommendation to isolate patients with COVID-19 for 10 days provides an appropriate margin of safety and transmission after removal of precautions has not been reported. There are no data suggesting that the duration of infectivity for VOCs is longer than for NVSC2.

Recommendations

10. **Outpatients and hospitalized patients with mild or moderate COVID-19 AND no severe immune compromise can be removed from Droplet and Contact Precautions 10 days from the onset of symptoms (or from their initial test positive date if asymptomatic), as long as fever has resolved and other symptoms are improving for at least 24 hours.**

11. **Patients with severe COVID-19 requiring treatment in an intensive care unit or patients with severe immunocompromise can be removed from Droplet and Contact Precautions 20 days from the onset of symptoms (or from their initial test positive date if asymptomatic and immunocompromised) as long as fever has resolved and their clinical status is improving for at least 24 hours.**

2.6 Other IPAC Measures

Health care settings must ensure that all essential measures to control NVSC2 are in place immediately, or the risk of nosocomial transmission and outbreaks with VOCs will be substantial. Attention to the basics, including ensuring appropriate use of PPE, hand hygiene, physical distancing and environmental cleaning must be in place. Education and training of staff on Routine Practices and Additional Precautions, and on COVID-19–specific policies and procedures is also critical.

The following suggestions represent IPAC interventions that are important to reduce nosocomial transmission of COVID-19 but are often incompletely implemented. Attention to these areas is important to prevent nosocomial transmission, and is even more important given the emergence of VOCs.
Commonly overlooked areas associated with substantial transmission risk include break rooms and other spaces where staff congregate to eat and drink. Careful attention should be paid to ensure staff have sufficient break areas to allow physical distancing of at least 2 metres and to make sure that staff remain distanced during breaks, particularly when removing their masks to eat or drink. Masks should be removed for the minimum amount of time required and should be worn even in break rooms when not eating or drinking. Additionally, disposable face shields should be discarded prior to entering break spaces; reusable face shields should be appropriately cleaned, disinfected and safely stored prior to eating and drinking and not placed on surfaces where food and drink are also located.

Due to the duration of the pandemic and the workload in health care, pandemic fatigue can occur. A simultaneous decline in case burden across Ontario, combined with the emergence of VOCs, create a risky period in which relaxation of IPAC practices could allow nosocomial COVID-19 transmission. Continuous education and periodic audits can be helpful to maintain best practices. Where staff practices in areas where COVID-19 patients are commonly treated (e.g., ICU or ED in acute care hospitals; COVID-19 wards in acute care hospitals or rehabilitation/complex continuing care hospitals; or any facility experiencing an outbreak) are consistently poor, the use of a safety coach (i.e., individual trained by IPAC to observed IPAC practices including PPE selection and use including consistent masking, correct PPE donning and doffing, hand hygiene, and physical distancing) can improve practices substantially.

One important intervention that has been effective for NVSC2 is universal masking. While all health care facilities in Ontario require universal masking by staff, there may be wider variation in practice with respect to patient masking. Patient masking, where feasible, may be a useful risk reduction strategy to implement to prevent the transmission of SARS-CoV-2. Recognizing that in specific patient populations masking may be challenging (e.g., patients with dementia, some psychiatric conditions, moderate to severe hypoxia, paediatric patients), patient care should not be refused based on an inability of the patient to mask. However, these exceptions are rare and in the majority of cases patients are capable of masking.

Recommendations

12. Ensure that basic measures to prevent nosocomial COVID-19 are in place including universal masking, physical distancing, and hand hygiene.

13. Ensure that health care providers have sufficient break space where they can safely eat and drink and that protocols are in place to avoid crowding and ensure appropriate physical distancing and masking in these areas.

14. Where staff practices are inconsistent in high risk areas where suspected or confirmed COVID-19 patients are routinely treated consider using a safety coach.

15. Health care settings should ensure that patients are masked (unless there is a contraindication to masking or the patient is unable to mask) in all of the following situations except when the mask must be removed briefly for clinical purposes (e.g., for an oral exam or nasopharyngeal swab). The health care setting should provide patients with a medical mask in these instances:

 a. When visiting a client in their home.
b. In all areas of an outpatient health care facility including the exam room.

c. In all areas of an acute care hospital except within the patient room (see below).

16. Inpatient settings in acute care hospitals should also consider:

a. Having patients mask within their rooms when health care providers are in the room, or within 2 metres of the patient.

b. Having patients mask in multi-bed rooms if they are ambulatory and may come within 2 metres of another patient.

17. Resident masking may not be feasible for residents in many long term care homes. However, resident masking when outside the room should be supported when requested by the resident and where the resident is interested in, and able to, appropriately mask.

18. Visitors to health care settings should be reduced as per provincial and facility policies. Essential visitors should be masked at all times when in the health care setting, including inside the patient's room.

19. Where health care settings expect patients to be masked, the health care setting should provide the patient with a medical mask.

2.7 Environmental Cleaning

Effective environmental cleaning is important to reduce the risk of SARS-CoV-2 transmission although indirect contact transmission via contaminated surfaces and equipment is not considered the primary mode of SARS-CoV-2 transmission. SARS-CoV-2 does not survive for prolonged periods on most surfaces and is inactivated by hospital-grade disinfectants through routine cleaning processes. Health care settings should follow PIDAC's Best Practices for Environmental Cleaning for Prevention and Control of Infections in All Health Care Settings.

Recommendations

20. Health care facilities should have sufficient environmental cleaning resources to ensure a safe and clean environment and should have protocols in place for both routine cleaning and disinfection, and cleaning and disinfection for patients with COVID-19.

21. No changes in environmental cleaning protocols are required specific to patients with known VOC infection as compared to patients with NVSC2.

2.8 Heating, Ventilation and Air Conditioning

SARS-CoV-2 transmission occurs predominantly through unprotected exposure of mucous membranes to respiratory droplets. Direct and indirect contact transmission may also play a lesser role in transmission, and transmission through small particle respiratory droplets or aerosols is possible under
some conditions including during aerosol-generating medical procedures (AGMP) or via prolonged exposure in poorly ventilated spaces.40

Recmmendation

22. All health care facilities should review their HVAC systems and ensure they are in compliance with CSA Z317.2:19 or other regulations related to their facility type.43

2.9 Outbreak Management for VOCs

Guidance for outbreak management in acute and long-term care settings should be similar for VOCs and NVSC2. More aggressive containment measures are appropriate, however, for new variants that are not yet widely disseminated in Ontario especially those variants that may be associated with immune evasion and reduced vaccine efficacy. Currently this would include outbreaks due to all three VOCs; however, if further data confirm widespread local transmission of B.1.1.7, this may no longer be true for this variant. Consultation with IPAC and public health experts is appropriate for VOC outbreaks, particularly with uncommon or new VOCs.

When VOC transmissibility is higher, or where the serial interval may be reduced,14 rapid transmission in the outbreak setting may occur. Therefore frequent symptom screening and testing of both patients and staff is essential.

Recommendations

23. A single possible nosocomial case of a suspected or confirmed VOC should trigger immediate testing of all patients and staff in the affected area.

24. Facilities with a VOC outbreak should consult IPAC and public health experts particularly for new VOCs or VOCs not yet widely disseminated in Ontario.

25. As soon as a COVID-19 outbreak within a health care facility is identified, testing of one to three COVID-19-positive cases for VOCs is recommended*.

26. For VOC outbreaks, or for rapidly expanding outbreaks where VOC test results are not yet available, all patients and staff should be tested for COVID-19 frequently (e.g., every 3 to 5 days) and tests should be prioritized to ensure a rapid turn-around time to guide outbreak management.

27. Timely forward and backwards contact tracing is essential for all COVID-19 outbreaks and must be performed rapidly in collaboration with IPAC, occupational health and safety, and public health (where facilities have these resources) and by public health at facilities that do not have adequate IPAC or occupational health and safety support.

28. Closing outbreak units to new admissions, avoiding non-essential transfers from outbreak units and restricting staff to outbreak units is recommended for respiratory virus outbreaks including COVID-19, but is particularly important for new and emerging VOCs.

* Public Health Ontario has now recommended that all positive specimens be screened for the 501Y mutation and sequenced if positive.30
Table 1. Epidemiology of SARS-CoV-2 Variants of Concern

<table>
<thead>
<tr>
<th>Variants of Concern</th>
<th>B.1.1.7</th>
<th>501Y.V2</th>
<th>P.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Labels</td>
<td>VOC202012/01 (Public Health England)</td>
<td>VOC202012/02 (Public Health England)</td>
<td>VOC202101/02 (Public Health England)</td>
</tr>
<tr>
<td></td>
<td>20I/501Y.V1 (Nextstrain)</td>
<td>B.1.351 (PANGO lineage)</td>
<td>20B/501Y.V3 (Nextstrain)</td>
</tr>
<tr>
<td>First Detected</td>
<td>September 2020<sup>4</sup></td>
<td>October 2020<sup>4</sup></td>
<td>January 2021<sup>4</sup></td>
</tr>
<tr>
<td>Country First Reported</td>
<td>United Kingdom</td>
<td>South Africa</td>
<td>Brazil and Japan</td>
</tr>
<tr>
<td>Countries with Cases Detected</td>
<td>As of January 19, 2021; it has been identified in 60 other countries, including the Americas, Asia, Australasia, the Middle East and Africa.<sup>4</sup></td>
<td>As of January 19, it has been identified in 23 other countries, including the Americas, Europe, Asia, Australia, and Zambia.<sup>4</sup></td>
<td>As of January 19, 2021, it has also been identified in a returning traveller in South Korea. Very little information on its epidemiology is available.<sup>4</sup></td>
</tr>
<tr>
<td>Community Transmission</td>
<td>Community transmission has been reported in Israel, Denmark, Portugal.<sup>4</sup></td>
<td></td>
<td>In addition, it has also been detected in the United States, Germany, Italy and the Netherlands, with community transmission reported in Columbia.<sup>44</sup></td>
</tr>
<tr>
<td>Variants of Concern</td>
<td>B.1.1.7</td>
<td>501Y.V2</td>
<td>P.1</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>---------</td>
<td>-----</td>
</tr>
<tr>
<td>Increased Transmissibility</td>
<td>Probable</td>
<td>Possible</td>
<td>Unknown</td>
</tr>
<tr>
<td>Risk assessment by ECDC:⁴</td>
<td></td>
<td></td>
<td>Mutation in N501Y spike protein suggests that increased transmissibility is plausible.⁴</td>
</tr>
<tr>
<td>• In a modelling study, Vöhringer et al. estimated a reproductive number (R) of 1.25 for this variant, compared to 0.85 for other circulating variants during the lockdown in England.³²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Using a surrogate with N501Y and Δ69/Δ70 markers, Leung et al. estimated a 75% increase in R for this variant between September 22 and December 1, 2020 in the UK.³³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Using S-gene target failure as proxy for this variant, Davies et al. modelled data on hospitalization, ICU admission and deaths from three English regions and estimated a 56% (95% credible interval: 50%–74%) increase in R than previously identified SARS-CoV-2 variants.³⁴</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A risk assessment by the New and Emerging Respiratory Virus Threats Advisory Group (NERVTAG) concludes that this variant has higher transmissibility compared to other variants identified in the UK but the magnitude of additional growth rate is uncertain.¹⁴,²⁷</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECDC reviewed preliminary data and suggests that changes in the spike protein may facilitate escape from neutralization by antibodies and result in higher transmissibility.⁴
<table>
<thead>
<tr>
<th>Variants of Concern</th>
<th>B.1.1.7</th>
<th>501Y.V2</th>
<th>P.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>advisory group reviewed three analyses, which reported an R value between 1.57 and 1.72; an increase in R by 0.39 (unweighted) to 0.93 (weighted); a faster generation time of 71%; or a 56% increase in transmissibility, compared to other circulating strains in the UK. Additional studies are required to inform the underlying mechanism for the increased transmissibility (e.g., how soon one becomes infective after an infection, viral load, ease of binding of the variant to host cells). In addition, NERVTAG reviewed data inferred from RT-PCR cycle threshold value and suggested an increase in viral load by a factor of around.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reduced Diagnostic Accuracy of Available Tests</th>
<th>Unlikely</th>
<th>Unknown(^4)</th>
<th>Unlikely(^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No evidence of negative impact on rapid antigen detection tests. Most commercial RT-PCR tests have multiple targets to detect the variant.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Increased Risk of Re-infection</th>
<th>Unlikely</th>
<th>Possible</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>A case of re-infection with this variant causing a critical illness in a 78-year-old patient on hemodialysis has been confirmed in the UK,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This lineage exhibits complete escape from neutralizing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genomic analysis suggests that neutralization of this variant by antibodies may be affected.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variants of Concern</td>
<td>B.1.1.7</td>
<td>501Y.V2</td>
<td>P.1</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>---------</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>months after the initial episode. However, Public Health England reported consistent evidence of that convalescent sera from patients infected with this variant show neutralising activity against other variants, and the converse is also true.</td>
<td>antibodies in COVID-19 convalescent plasma. Wang P, et al. reported marked resistance to neutralization of this variant by convalescent plasma and vaccinee sera.</td>
<td>A case of reinfection with this variant has been confirmed in a 29-year-old immunocompetent female resident in Brazil, previously infected with a B.1 lineage virus 9 months ago. Both episodes were moderate in severity. However, there is insufficient data to indicate a higher risk of re-infection by this variant.</td>
</tr>
</tbody>
</table>

Increased Risk of Infection Post-Vaccination

Unlikely
- A preprint by Muik A, et al. tested sera from 16 persons vaccinated with the mRNA-based COVID-19 vaccine BNT162b2 and reported similar neutralizing titers to the Wuhan reference strain and to this variant.
- Another preprint by Wu K, et al. tested sera from 8 persons vaccinated with the mRNA-1273 COVID-19 vaccine and reported no significant impact on neutralization against engineered virus expressing the B.1.1.7 spike variant.

Possible
- A preprint by Wu K, et al. tested sera from 8 persons vaccinated with the mRNA-1273 COVID-19 vaccine and reported reduced but still significant neutralization against engineered virus expressing the B.1.351 spike variant.
- This lineage exhibits complete escape from neutralizing

Unknown
- Genomic analysis suggests that recognition of this variant by antibodies may be affected.
<table>
<thead>
<tr>
<th>Variants of Concern</th>
<th>B.1.1.7</th>
<th>501Y.V2</th>
<th>P.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>antibodies in COVID-19 convalescent plasma.(^{24}) Novavax reported a vaccine efficacy of 49.4% (95% confidence interval: 6.1%–72.8%) for its NVX-CoV2373 COVID-19 vaccine in preventing symptomatic COVID-19 in its phase 2b trial in South Africa.(^{22}) Johnson & Johnson reported an overall effectiveness of 57% of its Janssen COVID-19 vaccine against moderate to severe COVID-19 in its phase 3 trial in South Africa.(^{23})</td>
<td></td>
</tr>
</tbody>
</table>

Increased Disease Severity

Possible

NERVTAG reported a realistic possibility of increased risk of death compared to other variants.\(^{16}\)

Unknown\(^{4}\)

Unknown\(^{4}\)
Appendix A: Summary of Recommendations

1. Currently used PCR-based tests for COVID-19 can continue to be used for diagnosis despite the emergence of the B.1.1.7 and 501Y.V2 VOCs in Ontario.

2. Patients with COVID-19 should be screened for the 501Y mutation and referred for whole genome sequencing based on the criteria for testing provided by the Public Health Ontario*.

3. Medically necessary transfers of patients with COVID-19 should continue to occur for patients with a known VOC.

4. For transfers intended to off-load pressures in hospitals experiencing a COVID-19 surge, current regional processes for transfer which include discussions with local hospital IPAC, in consultation with public health, should determine whether transfer can proceed and the IPAC precautions required. Decisions will depend on an understanding of the specific VOC involved, the current epidemiology of the VOC in Ontario, and the status of the sending and receiving facility. However, in most situations necessary transfers should proceed with appropriate precautions and transfers should not be delayed because the patient’s VOC status is unknown.

5. Patients with COVID-19 due to B.1.1.7 can be cohorted with other COVID-19 positive patients (as long as there are no additional contraindications to cohorting).

6. Patients with COVID-19 due to B.1.1.7 can be cohorted with patients who have resolved COVID-19 within the previous 90 days (as long as there are no additional contraindications to cohorting).

7. No recommendation for other VOCs can be made currently - but in the absence of further information patients with a known VOC other than B.1.1.7 should be in a private room whenever possible.

8. The indications for the use of an airborne infection isolation room are the same for patients with VOCs and NVSC2.

9. There is no recommended change in PPE practices related to the emergence of the B.1.1.7 VOC or other VOCs in Ontario.

10. Outpatients and hospitalized patients with mild or moderate COVID-19 AND no severe immune compromise can be removed from Droplet and Contact Precautions 10 days from the onset of symptoms (or from their initial test positive date if asymptomatic), as long as fever has resolved and other symptoms are improving for at least 24 hours.36

11. Patients with severe COVID-19 requiring treatment in an intensive care unit or patients with severe immunocompromise can be removed from Droplet and Contact Precautions 20 days from the onset of symptoms (or from their initial test positive date if asymptomatic and immunocompromised) as long as fever has resolved and their clinical status is improving for at least 24 hours.36
12. Ensure that basic measures to prevent nosocomial COVID-19 are in place including universal masking, physical distancing, and hand hygiene.

13. Ensure that health care providers have sufficient break space where they can safely eat and drink and that protocols are in place to avoid crowding and ensure appropriate physical distancing and masking in these areas.

14. Where staff practices are inconsistent in high risk areas where suspected or confirmed COVID-19 patients are routinely treated consider using a safety coach.

15. Health care settings should ensure that patients are masked (unless there is a contraindication to masking or the patient is unable to mask) in all of the following situations except when the mask must be removed briefly for clinical purposes (e.g., for an oral exam or nasopharyngeal swab). The health care setting should provide patients with a medical mask in these instances:
 a. When visiting a client in their home.
 b. In all areas of an outpatient health care facility including the exam room.
 c. In all areas of an acute care hospital except within the patient room (see below).

16. Inpatient settings in acute care hospitals should also consider:
 a. Having patients mask within their rooms when health care providers are in the room, or within 2 metres of the patient.
 b. Having patients mask in multi-bed rooms if they are ambulatory and may come within 2 metres of another patient.

17. Resident masking may not be feasible for residents in many long term care homes. However, resident masking when outside the room should be supported when requested by the resident and where the resident is interested in, and able to, appropriately mask.

18. Visitors to health care settings should be reduced as per provincial and facility policies. Essential visitors should be masked at all times when in the health care setting, including inside the patient's room.

19. Where health care settings expect patients to be masked, the health care setting should provide the patient with a medical mask.

20. Health care facilities should have sufficient environmental cleaning resources to ensure a safe and clean environment and should have protocols in place for both routine cleaning and disinfection, and cleaning and disinfection for patients with COVID-19.

21. No changes in environmental cleaning protocols are required specific to patients with known VOC infection as compared to patients with NVSC2.
22. All health care facilities should review their HVAC systems and ensure they are in compliance with CSA Z317.2:19 or other regulations related to their facility type.43

23. A single possible nosocomial case of a suspected or confirmed VOC should trigger immediate testing of all patients and staff in the affected area.

24. Facilities with a VOC outbreak should consult IPAC and public health experts particularly for new VOCs or VOCs not yet widely disseminated in Ontario.

25. As soon as a COVID-19 outbreak within a health care facility is identified, testing of one to three COVID-19-positive cases for VOCs is recommended*.

26. For VOC outbreaks, or for rapidly expanding outbreaks where VOC test results are not yet available, all patients and staff should be tested for COVID-19 frequently (e.g., every 3 to 5 days) and tests should be prioritized to ensure a rapid turn-around time to guide outbreak management.

27. Timely forward and backwards contact tracing is essential for all COVID-19 outbreaks and must be performed rapidly in collaboration with IPAC, occupational health and safety, and public health (where facilities have these resources) and by public health at facilities that do not have adequate IPAC or occupational health and safety support.

28. Closing outbreak units to new admissions, avoiding non-essential transfers from outbreak units and restricting staff to outbreak units is recommended for respiratory virus outbreaks including COVID-19, but is particularly important for new and emerging VOCs.
References

39. Ontario. Chief Medical Officer of Health; Ministry of Health; Ministry of Long-Term Care. COVID-19 directive #3 for long-term care homes under the Long-Term Care Homes Act, 2007, issued under section 77.7 of the Health Protection and Promotion Act (HPPA), R.S.O. 1990, c. H.7 [Internet].

43. CSA Group. CSA Z317.2:19 Special requirements for heating, ventilation, and air-conditioning (HVAC) systems in health care facilities. Toronto, ON: CSA Group; 2019

Public Health Ontario
480 University Avenue, Suite 300
Toronto, Ontario
M5G 1V2

647.260.7100
pidac@oahpp.ca
www.publichealthontario.ca