Guidance on screening and confirmation of carbapenem resistant *Enterobacteriaceae* (CRE)

December 12, 2011
Objectives:

• To discuss the guidelines for detection of CRE in the laboratory setting.

• To review process for submission of isolates to PHO Laboratory.

• To review the voluntary surveillance program for CRE.
The Issue

- Transmission of CRE has been identified in some Ontario hospitals
- To date we have limited epidemiology on the actual status of CRE in Ontario
- Without this information, we may be unable to prevent CRE from becoming endemic in Ontario hospitals and our communities
What are CRE?

- Carbapenem-resistant *Enterobacteriaceae* are *Enterobacteriaceae* that are resistant to carbapenem antimicrobials through the production of carbapenemases.
- To date, carbapenemases have been found most commonly in *E. coli* and *Klebsiella* spp – but have also been found in other Gram-negative species.
- Carbapenemases are a class of enzymes that inactivate carbapenem antibiotics.
- The genetic information to produce carbapenemases is often located on a mobile genetic element.
 - Can carry this resistance to other classes of antimicrobials.
Classes of carbapenemase

• Several different classes exist
• Each class has a three-letter acronym
 • KPC = *Klebsiella pneumoniae* carbapenemase
 • NDM = New Delhi metallo-β-lactamase
 • VIM = Verona integron-encoded metallo-β-lactamase
• Enzymes other than NDM have almost exclusively been found in hospitals
• NDM has been found in both hospitals and the community
Acquisition of CRE

• Risk factors for infection and colonization with CRE will be similar to those of other Gram-negative bacteria

• To date, the major risk factor appears to be receipt of health care in setting that have CRE
 • Hospitals along the eastern US seaboard - particularly New York City (KPC)
 • Greece (KPC)
 • Israel (KPC) and
 • The Indian subcontinent (NDM-1) – people coming from the Indian subcontinent with or without exposure to healthcare are also a risk
Transmission of CRE

• Transmission is via direct and indirect contact
• Site of colonization is the lower gastrointestinal tract
• Although the environment has rarely been implicated in outbreaks, sinks and other environmental surfaces have been implicated in transmission of *Klebsiella* and *Pseudomonas* spp.
• Acquisition of resistance may also occur by transmission of the mobile genetic element carrying the carbapenemase between different bacterial strains and species
Work to date

• PIDAC-IPC has updated the best practice document on Routine Practices and Additional Precautions and added information on CRE to Annex A to provide guidance to healthcare providers
 • As part of the process, PIDAC conducted a literature search for scientific information on CRE

• PHO Laboratory convened a working group to provide guidance to laboratories to assist in identification of CRE
 • Many community laboratories stated that they were unable to identify CRE within their own laboratories
The Challenge

• Information on CRE continues to evolve as additional surveillance data becomes available

• So far PHO Laboratory has confirmed and identified following carbapenemases:
 • 28 NDM
 • 27 KPC
 • 5 OXA-48
 • 3 VIM
 ❖ This is a partial list as not all hospital labs send their specimens to PHO Laboratory. Academic health science centres perform their own testing

• Experience in other settings has demonstrated that an active surveillance program is central to controlling CRE
TESTING AND REPORTING CARBAPENEMASE-PRODUCING CARBAPENEM-RESISTANT ENTEROBACTERIACEAE (CRE)

QMP-LS Recommendations

Susan M. Poutanen MD MPH FRCPC
Medical Microbiologist and Infectious Disease Physician
Mount Sinai Hospital, University Health Network, U. of Toronto
Vice Chair, Microbiology Committee, QMP-LS
QMP-LS NOTICE

The document *Consensus Recommendations - BACT - AST Reporting – 2011* is now available in QView™. It has been posted in the folder: General - EQA / EQA Guidelines and Recommendations / Microbiology / BACT / Antimicrobial Susceptibility Reporting Recommendations – BACT

IMPORTANT

This updated consensus document (previously named a guideline)—*Antimicrobial Susceptibility Testing and Reporting on Bacteriology Specimens*—contains significant changes from the previous version (March 16, 2010). Key changes are found in the appendices:

Appendix A (ESBL) and Appendix B (AmpC) were formerly housed in the broadsheet “Extended-Spectrum β-lactamase and AmpC Resistance in Gram-negative Bacilli.” These have been updated and added to this document. The broadsheet has been archived.

NEW Appendix C (carbapenemase-producing, carbapenem-resistant *Enterobacteriaceae*) has been developed by the QMP-LS Microbiology Committee with stakeholder input from Public Health Ontario and other key experts in microbiology and infection control.

If you have questions please contact Christine Fleming
Tel: 416.323.9540/1.877.323.9540 ext. 238
fleming@qmpls.org
QMP–LS NOTICE

The document *Consensus Recommendations - BACT - AST Reporting – 2011* is now available in QView™. It has been posted in the folder: General - EQA / EQA Guidelines and Recommendations / Microbiology / BACT / Antimicrobial Susceptibility Reporting Recommendations – BACT

IMPORTANT

This updated consensus document (previously named a guideline) — *Antimicrobial Susceptibility Testing and Reporting on Bacteriology Specimens* — contains significant changes from the previous version (March 16, 2010). Key changes are found in the appendices:

Appendix A (ESBL) and Appendix B (AmpC) were formerly housed in the broadsheet “Extended-Spectrum β-lactamase and AmpC Resistance in Gram-negative Bacilli.” These have been updated and added to this document. The broadsheet has been archived.

NEW Appendix C (carbapenemase-producing, carbapenem-resistant *Enterobacteriaceae*) has been developed by the QMP–LS Microbiology Committee with stakeholder input from Public Health Ontario and other key experts in microbiology and infection control.

If you have questions please contact Christine Fleming
Tel: 416.323.9540/1.877.323.9540 ext. 238
fleming@qmpls.org
NEW Appendix C (carbapenemase-producing, carbapenem-resistant Enterobacteriaceae) has been developed by the QMP–LS Microbiology Committee with stakeholder input from Public Health Ontario and other key experts in microbiology and infection control.
QView

Documents

- EQA Guidelines and Recommendations
 - Anatomical Pathology
 - Chemistry
 - Cytology
 - Genetics
 - Hematology
 - Microbiology
 - BACT
 - Anaerobes Guideline - BACT
 - Antimicrobial Susceptibility Reporting Recommendations - BACT
 - Announcement - PHO Webinar Guidance on Screening and Confirmation of CRE
 - Committee Comments - BACT 0606 PP
 - Consensus Recommendations - BACT - AST Reporting - 2011
 - Participant Feedback - BACT - Antimicrobial Susceptibility Reporting
Background

• June 2010 – CLSI changed the carbapenem breakpoints so that CRE screening and confirmatory testing would no longer be necessary for directing therapy

• QMP-LS Recommendation:
 Regardless of the screening breakpoints used, continue CRE screening and confirmatory testing
Background

- CLSI previously recommended the Modified Hodge Test which detects class A carbapenemase such as KPCs but it may miss metallo-β-lactamases such as NDM-1.
- Phenotypic inhibitor disks/tablets, on the other hand reliably detect NDM-1 and KPCs but will not detect Class D carbapenemases, such as OXA-48.
Algorithm

APPENDIX C: ALGORITHM FOR TESTING AND REPORTING CARBAPENEMASE-PRODUCING CARBAPENEM-RESISTANT ENTEROBACTERIACEAE (CRE) (CONT'D)

NOTE: This algorithm is based on the best data currently available but may change as new information is published.

Test the Following Organisms:
Enterobacteriaceae

Screening (use one or more of the following tests)*
Standard meropenem (10 μg) disk diffusion zone diameter ≤ 25 mm
Rosco MRPS16 meropenem tablet zone diameter ≤ 16 mm
Broth microdilution/agar dilution meropenem MIC ≥ 0.25 mg/L
Commercial Test Card/Panel†

*Screening criteria are based on EUCAST epidemiologic cut-off.†

†Until automated instruments make panels/cards available that are able to report meropenem MICs as low as 0.25 mg/L, laboratories should either include a meropenem disk in parallel with their panel/card or use an erlotinib screening cut-off of 1 mg/L from their commercial system. Due to lack of specificity, this erlotinib screening screening cut-off of 1 mg/L from their commercial system. Due to lack of specificity, this erlotinib screening should be followed by one of the meropenem disk/tablet screening tests as described above. Laboratories must validate commercial test cards/panels to ensure that there is agreement with a reference CLSI method.

Preliminary Reporting if Screen Positive
A preliminary report such as the following should be released for all positive screen results and susceptible β-lactam, β-lactam/β-lactamase inhibitor combinations and carbapenemase results should not be reported:
"Screening tests suggest this organism may produce a carbapenemase. Further report to follow."
Also consider adding susceptibility testing for tigecycline and colistin if there are no other susceptible reportable agents.

Confirmatory Test if Screen Positive
All meropenem screen-positive isolates should be sent to a reference laboratory for confirmatory testing by PCR.

NOTE: Laboratories are also encouraged to simultaneously perform phenotypic testing using β-lactamase inhibitors (e.g., EFC = MBL Confirm Kit, Rosco Diagnostica, Denmark; Pro-Leb, Canada) in order to expedite preliminary reports of the type of carbapenemase present. Updated reports should be released as indicated in Table 1 on page 11.

Final Reporting

Carbapenemase PCR Positive
Enterobacteriaceae possessing a carbapenemase should be reported as resistant to all β-lactams, β-lactam/β-lactamase inhibitor combinations and carbapenems. In addition, a note such as the following should be appended to the report alerting the clinician and Infection Control of the presence of a carbapenemase:
"This organism is POSITIVE for carbapenemase (add specific carbapenemase that is confirmed) based on PCR. It is resistant to all penicillins, cephalosporins, β-lactam/β-lactamase inhibitor combinations and carbapenems (erlotinib, imipenem, meropenem and doripenem). Infection control precautions should be followed."

Carbapenemase PCR Negative
Interpret and report the carbapenem using CLSI interpretive criteria and add the following note to the report:
"This organism is NEGATIVE by PCR for carbapenemase genes."
Algorithm

Screening

Preliminary Reporting

Confirmatory Test

Final Reporting
Algorithm

NOTE: This algorithm is based on the best data currently available but may change as new information is published.
Algorithm - Screening

Test the Following Organisms

Enterobacteriaceae

Screening (use one or more of the following tests)

- Standard meropenem (10 μg) disk diffusion zone diameter ≤ 25 mm
- Rosco MRP10 meropenem tablet zone diameter ≤ 26 mm
- Broth microdilution/agar dilution meropenem MIC ≥ 0.25 mg/L
- Commercial Test Card/Panel†

Screening criteria are based on EUCAST epidemiologic cut-offs. ††
E. coli Meropenem Disk Zone Diameter Distribution

Epidemiological cut-off: wild-type ≥ 26 mm (MIC ≤ 0.125 mg/L)
Algorithm - Screening

Test the Following Organisms
Enterobacteriaceae

Screening (use one or more of the following tests)*
- Standard meropenem (10 μg) disk diffusion zone diameter ≤ 25 mm
- Rosco MRP10 meropenem tablet zone diameter ≤ 26 mm
- Broth microdilution/agar dilution meropenem MIC ≥ 0.25 mg/L
- Commercial Test Card/Panel†

*Screening criteria are based on EUCAST epidemiologic cut-offs. ††
Algorithm - Screening

• †Until automated instruments make panels/cards available that are able to report meropenem MICs as low as 0.25 mg/L, laboratories should either:
 1) include a meropenem disk in parallel with their panel/card or
 2) use an ertapenem MIC screening cut-off of ≥ 1 mg/L from their commercial system

• Ertapenem screen-positive isolates should be followed by one of the meropenem disk/tablet screen tests.
• Laboratories must validate commercial test cards/panels to ensure that there is agreement with a reference CLSI method.
Algorithm – Preliminary Reporting

“Screening tests suggest this organism may produce a carbapenemase. Further report to follow.”

• Susceptible β-lactam, β-lactam/β-lactamase inhibitor combinations and carbapenem results should not be reported.

• Consider adding susceptibility testing for tigecycline and colistin if there are no other susceptible reportable agents.
All meropenem screen-positive isolates should be sent to a reference laboratory for confirmatory testing by PCR.

- Laboratories are also encouraged to simultaneously perform phenotypic testing using β-lactamase inhibitors (e.g. KPC + MBL Confirm Kit, Rosco Diagnostica, Denmark; Pro-Lab, Canada) in order to expedite preliminary reports of the type of carbapenemase present.
Phenotypic Testing using Inhibitors

<table>
<thead>
<tr>
<th>Examples</th>
<th>Inhibition detected</th>
<th>Interpretation</th>
<th>Recommended Updated Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disks are in the following order: MR-DP MRP10 MR-BO MR-CL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td>DP only</td>
<td>Class B carbapenemase (MBL) (e.g. NDM-1)</td>
<td>“Additional testing suggests this organism produces a metallo-beta-lactamase carbapenemase (e.g. NDM-1). Confirmation to follow.”</td>
</tr>
<tr>
<td>✓</td>
<td>BO only</td>
<td>Class A carbapenemase (e.g. KPC)</td>
<td>“Additional testing suggests this organism produces a class A carbapenemase (e.g. KPC). Confirmation to follow.”</td>
</tr>
<tr>
<td>✓</td>
<td>Any other combination of inhibition</td>
<td>Possible carbapenemase</td>
<td>Keep the preliminary report unchanged.</td>
</tr>
<tr>
<td>×</td>
<td>Suspicious for Class D carbapenemase (e.g. OXA-48)</td>
<td></td>
<td>Keep the preliminary report unchanged.</td>
</tr>
</tbody>
</table>
Algorithm – Final Reporting

Carbapenemase PCR POSITIVE

“This organism is POSITIVE for ____ carbapenemase (add specific carbapenemase that is confirmed) based on PCR. It is resistant to all penicillins, cephalosporins, β-lactam-β-lactamase inhibitor combinations and carbapenems (ertapenem, imipenem, meropenem and doripenem). Infection control precautions should be followed.”
Carbapenemase PCR NEGATIVE

“This organism is NEGATIVE by PCR for carbapenemase genes.”

• Interpret and report the carbapenems using CLSI interpretive criteria.
Algorithm

Screening

Preliminary Reporting

Confirmatory Test

Final Reporting
Questions?
Screening for colonization with carbapenem-resistant *Enterobacteriaceae* (CRE)

Samir Patel PhD FCCM
Clinical Microbiologist
Public Health Ontario
Public Health Laboratory – Toronto
samir.patel@oahpp.ca
Objectives

• To present overview of guidance document on laboratory methods for screening of CRE

• Risk factors

• To address laboratory procedures on identification of CRE with focus on:
 • Specimen collection
 • Initial screening
 • Confirmation of CRE

• Role of PHL in confirmation of CRE
The issue

• Prevalence of CRE is increasing

• In Ontario, transmission of CRE among hospitalized patients has been reported

• Screening for CRE colonization is challenging

• No reliable screening medium commercially available
Why guidance document was developed?

- PIDAC has recommended hospitals implement surveillance program for screening of CRE
- Patients with risk factors at admission should be screened for carriage
- Hospitalized patients exposed to known CRE should be screened for possible transmission
- There has not been any clear recommendations published on how labs should screen for CRE from screening specimens
Who should be screened for CRE?

• To date, the major risk factor appears to be receipt of health care in setting that have CRE
 • United States (KPC)
 • Greece (KPC)
 • Israel (KPC)
 • Turkey (OXA-48)
 • Greece and Italy (VIM)
 • Indian subcontinent (NDM-1)
What did PHOL do?

- A thorough literature was conducted to determine best method for detection of CRE organisms
- A group of experts discussed the need for a guidance document to inform laboratories how they can screen for CRE
- A consensus document was developed
Recommended specimens for screening

- Rectal swabs are recommended for screening patients for CRE carriage.
- Stool specimens are also acceptable but may be more difficult to obtain.
- Urine specimens may be considered in addition to rectal swabs for screening in patients with indwelling catheters and/or those who have had CRE isolated from urine specimens in the past.
- During outbreaks, the outbreak management team may consider requesting other specimens (e.g., sputum in intensive care unit patients, in whom CRE have caused pneumonia) for screening.
Processing Specimens in Laboratory

• Selective media currently available for isolation of ESBL-producing *Enterobacteriaceae* are recommended

• Chromogenic ESBL selective media should be avoided since most contain inhibitor of ampC

• *Enterobacteriaceae* grown on ESBL-selective medium should warrant further work-up

• Perform disk diffusion test using meropenem disc on Mueller-Hinton agar plate

• Isolates exhibit zone size ≤ 25 mm should be screened using phenotypic inhibitor test and/or molecular testing methods

• Isolates should be forwarded to PHL confirmation
Isolates forwarded to PHL

- In order to receive confirmation result from PHL in a timely manner, following information MUST be provided on requisitions:
 - Identification of isolate
 - Carbapenem susceptibility testing results
 - Meropenem screening results
 - Phenotypic inhibitor testing results (if available)
- Isolates with incomplete information will result in longer delays
Request for Carbapenemase confirmation on isolates submitted with all relevant information

Meropenem MIC ≥ 0.25 mg/L or Ertapenem MIC ≥ 1 mg/L or Meropenem screen test (zone size ≤ 25 mm)

Phenotypic inhibitor testing using meropenem

Multiplex PCR
The Challenge

- The information on epidemiology, transmission, and detection of CRE is evolving rapidly.
- Early detection is essential in preventing transmission among hospitalized patients and spreading into community settings.
- As more data become available, algorithm may change to improve sensitivity/specificity and efficiency.
Thank you

• For more information:

 www.oahpp.ca

 --Management of carbapenem resistant *Enterobacteriaceae* (CRE)

Dr. Samir Patel

Clinical microbiologist

Reference antimicrobial susceptibility testing

samir.patel@oahpp.ca
Guidance on screening and confirmation of carbapenem resistant *Enterobacteriaceae* (CRE)

December 12, 2011
Objectives:

• To discuss the guidelines for detection of CRE in the laboratory setting.

• To review process for submission of isolates to PHO Laboratory.

• To review the voluntary surveillance program for CRE.
The Issue

- Transmission of CRE has been identified in some Ontario hospitals
- To date we have limited epidemiology on the actual status of CRE in Ontario
- Without this information, we may be unable to prevent CRE from becoming endemic in Ontario hospitals and our communities
What are CRE?

- Carbapenem-resistant *Enterobacteriaceae* are *Enterobacteriaceae* that are resistant to carbapenem antimicrobials through the production of carbapenemase.

- To date, carbapenemases have been found most commonly in *E. coli* and *Klebsiella* spp – but have also been found in other Gram-negative species.

- Carbapenemases are a class of enzymes that inactivate carbapenem antibiotics.

- The genetic information to produce carbapenemases is often located on a mobile genetic element.
 - Can carry this resistance to other classes of antimicrobials.
Classes of carbapenemase

- Several different classes exist
- Each class has a three-letter acronym
 - KPC = *Klebsiella pneumoniae* carbapenemase
 - NDM = New Delhi metallo-β-lactamase
 - VIM = Verona integron-encoded metallo-β-lactamase
- Enzymes other than NDM have almost exclusively been found in hospitals
- NDM has been found in both hospitals and the community
Acquisition of CRE

• Risk factors for infection and colonization with CRE will be similar to those of other Gram-negative bacteria

• To date, the major risk factor appears to be receipt of health care in setting that have CRE
 • Hospitals along the eastern US seaboard - particularly New York City (KPC)
 • Greece (KPC)
 • Israel (KPC) and
 • The Indian subcontinent (NDM-1) – people coming from the Indian subcontinent with or without exposure to healthcare are also a risk
Transmission of CRE

• Transmission is via direct and indirect contact
• Site of colonization is the lower gastrointestinal tract
• Although the environment has rarely been implicated in outbreaks, sinks and other environmental surfaces have been implicated in transmission of *Klebsiella* and *Pseudomonas* spp.
• Acquisition of resistance may also occur by transmission of the mobile genetic element carrying the carbapenemase between different bacterial strains and species
Work to date

• PIDAC-IPC has updated the best practice document on Routine Practices and Additional Precautions and added information on CRE to Annex A to provide guidance to healthcare providers
 • As part of the process, PIDAC conducted a literature search for scientific information on CRE

• PHO Laboratory convened a working group to provide guidance to laboratories to assist in identification of CRE
 • Many community laboratories stated that they were unable to identify CRE within their own laboratories
The Challenge

• Information on CRE continues to evolve as additional surveillance data becomes available

• So far PHO Laboratory has confirmed and identified following carbapenemases:
 • 28 NDM
 • 27 KPC
 • 5 OXA-48
 • 3 VIM
 ❖ This is a partial list as not all hospital labs send their specimens to PHO Laboratory. Academic health science centres perform their own testing

• Experience in other settings has demonstrated that an active surveillance program is central to controlling CRE
Carbapenamase-resistant Enterobacteriaceae (CRE) Surveillance

Camille Achonu
Epidemiologist, Hospital Infections
Why is CRE surveillance important?

• Little is known about the epidemiology of CRE in Ontario

• Information on CRE incidence and epidemiology is critical for informing infection prevention and control policies and procedures

• Early action may help limit the likelihood of CRE becoming endemic in Ontario
Surveillance process

- Case Definition: patients positive with laboratory confirmed carbapenemase resistant enterobacteriaceae
Information Being Collected

- Submitter contact details
- Patient demographics
- Specimen information
- Risk factors
Quarterly Reports

• Descriptive summary of cases

• All data will be aggregated and no hospitals shall be identified

• Distributed internally to PHO scientific directors in S&E, PHOL, IDPC and externally to hospitals, health unit MOHs
Contact Information

Camille Achonu
Epidemiologist, Hospital Infections
Public Health Ontario | Santé publique Ontario
480 University Avenue, Suite 300 | 480, avenue Université, bureau 300
Toronto, ON M5G 1V2
Telephone: 647-260-7402 Confidential Fax: 647-260-7757
Email: camille.achonu@oahpp.ca