Chemical Disinfectants - Understanding Label Claims

Justin Moriarty – Peel Public Health
November 3, 2015
justin.moriarty@peelregion.ca
This document was produced by its author and/or organization. PHO did not produce this document and is not responsible for the information provided within this document.
Conflict of Interest

- Peel Public Health does not endorse or recommend specific products.

- No relevant financial or other relationship that may lead to a potential bias.

- Nothing to disclose.
Disclaimer

• **General disclaimer information**
 This presentation contains information, data, documents, pages and images prepared by Peel Public Health ('the Information'). The Information is made available on the understanding that Peel Public Health (PPH) and its employees and agents shall have no liability (including liability by reason of negligence) to the users for any loss, damage, cost or expense incurred or arising by reason of any person using or relying on the information and whether caused by reason of any error, negligent act, omission or misrepresentation in the Information or otherwise.

• **Accuracy of information**
 Although PPH has prepared the Information contained in this presentation with all due care and updates the Information regularly, PPH does not warrant or represent that the Information is free from errors or omission. Whilst the Information is considered to be true and correct at the date of publication, changes in circumstances after the time of publication may impact on the accuracy of the Information. The Information may change without notice and PPH is not in any way liable for the accuracy of any information printed and stored or in any way interpreted and used by a user.

• **Links to third-party sites**
 The Information contained in this presentation includes information derived from various third parties which are neither endorsed nor supported by PPH and does not necessarily reflect any policies, procedures, standard or guidelines of PPH. PPH takes no responsibility for the accuracy, currency, reliability and correctness of any information included in the Information provided by third parties nor for the accuracy, currency, reliability and correctness of links or references to information sources (including Internet Sites) outside of the PPH website. Links to other Internet Sites are not under the control of PPH and are provided for information only. Care has been taken in providing these links as suitable reference resources. However, due to the rapidly changing nature of the Internet content, it is the responsibility of the users to make their own investigations, decisions, enquiries about any information retrieved from other Internet Sites. Providing these links does not imply any endorsement, non-endorsement, support or commercial gain by PPH.
Agenda

- Presentation
 - Fundamentals
 - Hierarchy of resistance
 - Drug Identification Number (DIN)
 - Classes of chemicals
 - Issues with QUATs
 - Dilution

- Tool

- Exercises
What are the categories of liquid chemical disinfectants?

1. Sterilants
2. High Level Disinfectants
3. Low Level Disinfectants
 - Hard surfaces and noncritical equipment
 • Spaulding’s classification system
 • (#1 page 26, #2)
4. Sanitizers
 - Kitchens
Fundamentals

- You can’t disinfect dirt
- Follow the manufacturer’s instructions
 - For the disinfectant
 - For the equipment
- Check the material compatibility of the disinfectant
 - Fabric
 - Rubber
 - Silicone
 - Some Metals: Copper, Zinc, Brass, Aluminum
Cleaning vs Disinfection

• Cleaning:
 - Cleaning = Physical removal
 - Accomplished with water, **detergents** and mechanical action (#1) = water, soap, scrub
 - Soap = detergent = emulsifier = breaks apart oils
 - Result = Reduces the reservoir

• Disinfection:
 - The inactivation of disease-producing microorganisms
Disinfectant vs Antiseptic

• Disinfectant:
 – Applied only to inanimate objects (#1)
 – Used on medical equipment or environmental surfaces

• Antiseptic:
 – Applied only to living tissue and skin (#2)
 – Not for medical equipment or environmental surfaces
1-Step vs 2-Step Disinfectants

• Visible filth always removed first

• 1-Step (Less work)
 – Full cleaning step is not required before disinfecting
 – These products include soap (detergent or emulsifier) to break up oil and dirt

• 2-Step (More work)
 – E.g. “Apply to pre cleaned surfaces”
 – A full cleaning step is required before these disinfectants can be applied
 – Manufacturers do not promote this information
Why are some pathogens harder to kill?

- Different outer layers
- Like the shell of a nut...some nuts are harder to crack
- (#4)
Why are some pathogens harder to kill?

• Spores
 – Most durable form of life on earth
 – Clostridium spores from Greenland ice cores from a depth of 834 m (4,000 years old) started to germinate within the first 5 min (#5)

• Mycobacteria
 – Lack an outer cell membrane
 – Thick waxy cell wall (#6)
Why are some pathogens harder to kill?

- **Viruses**
 - Not all viruses are created equal
- **Lipid = Enveloped**
 - Soft envelope is an easy target for disinfectants
 - Examples: HIV, HBV, Influenza, RSV, Ebola, SARS (#7)
- **Non-lipid = Non-enveloped**
 - Examples: Norovirus, Rhinovirus, Hepatitis A, Adenovirus, Enterovirus (#7)
What is a DIN?

• What is a DIN?
 – Drug Identification Number

• Why is it critical?
 – Proves the product has been tested according to the standards set by Health Canada
 – **Allows us to trust the label claims**
 – **Every product used in healthcare must have a DIN**

• Health Canada DIN Search:

• NPN (Natural Product Number) Number
 – Not equivalent to a DIN
What are the keys to analyzing a disinfectant?

• Chemical class (active ingredients)
 – E.g. Hydrogen peroxide, sodium hypochlorite
 – Different chemicals have different strengths and weaknesses

• Label claims and Kill claims
 – Technical sheet may be available online

• Contact time
 – How long the surface must remain wet

• Dilution (if applicable)
 – Liquid concentrate
What are the main classes of chemicals used in disinfectants?

• Chemical class:
 – Alcohols
 – Chlorines
 – Hydrogen peroxide enhanced action
 • AKA: Accelerated Hydrogen peroxide
 • AKA: Stabilized Hydrogen peroxide
 – Quaternary ammonium compounds (QUATs)

• Uncommon:
 – Hydrogen peroxide (standard, not enhanced action), Iodophors, Phenolics

• PIDAC Best Practices for Environmental Cleaning (#2 Appendix E)
Chlorines (e.g. bleach)

• **Chemical:** Sodium hypochlorite

• **Advantages/Comments**
 – Kills everything (depending on the concentration)

• **Disadvantages/Comments**
 – Inactivated by organic material
 – Must be stored in **CLOSED** containers away from light & heat to prevent evaporation & deterioration
 – Material compatibility

• (#2 Appendix E)
Hydrogen peroxide enhanced action formulation (HP-EAF)

- **Chemical:** Hydrogen peroxide
- “Enhance action formula”
 - Surfactants, wetting agents or chelating agents
 - Drastically improves results over plain hydrogen peroxide (#2)

- **Advantages/Comments**
 - Kills everything (depending on the concentration)
 - Active in the presence of organic materials
 - Excellent cleaning ability

- **Disadvantages/Comments**
 - Material compatibility

(#2 Appendix E)
Quaternary ammonium compounds (QUATs)

- **Chemical:** Ammonium chloride
- **Advantages/Comments**
 - Good cleaning ability
- **Disadvantages/Comments**
 - **Do not use to disinfect instruments**
 - **Limited use as disinfectant because of narrow microbicidal spectrum**
- Generally not tuberculocidal or virucidal against hydrophilic (i.e. non-enveloped) viruses, does not kill spores (#8)
- (#2 Appendix E)
QUATs and Cotton Cloths

- Quaternary ammonium compounds (QUATs) **CANNOT** be used with cotton cloths
- When used with cotton, QUAT disinfectants **bind** to the cotton rendering the disinfectant ineffective
- When using QUAT disinfectants, microfiber cloths are recommended
- (#8 & #9)
QUAT + Alcohol Combination

- QUAT Alcohols:
 - Many popular brands
- Mycobacterium Tuberculosis is highly susceptible to alcohol (#8)
- Adding alcohol to a QUAT often makes it effective against TB
QUAT Alcohols

- Kill TB but not non-enveloped viruses
- Skip a step in the hierarchy of resistance

Public Health
What is a dilution ratio?

• CRITICAL: **Dilution Ratio** differs from **Dilution Factor**

• **Dilution Ratio**
 – Used on disinfectant labels
 – Dilution ratio of 1:10 = 1 part chemical to 10 parts water for a total of 11 parts

• **Dilution Factor**
 – Dilution factor of 1:10 = 1 part chemical to 9 parts water for a total of 10 parts
What is a dilution ratio?

- Example:
 - Instructions are to mix at 1:7
 - Supplied: Concentrated liquid = 4%
 - Goal: Final concentration after dilution = 0.5%

<table>
<thead>
<tr>
<th></th>
<th>Dilution Ratio</th>
<th>Dilution Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parts concentrate</td>
<td>1</td>
<td>10 mL</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>10 mL</td>
</tr>
<tr>
<td>Parts water</td>
<td>7</td>
<td>70 mL</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>60 mL</td>
</tr>
<tr>
<td>Total parts</td>
<td>8</td>
<td>80 mL</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>70 mL</td>
</tr>
<tr>
<td>Final concentration</td>
<td>(1/8)*0.04 =</td>
<td>0.5%</td>
</tr>
<tr>
<td></td>
<td>(1/7)*0.04 =</td>
<td>0.571%</td>
</tr>
</tbody>
</table>
What are the important label claims and kill claims?

• Beware of marketing
 – More kill claims does not indicate a superior product

• Canadian vs American technical sheets
 – Different licensing rules in the United States
 – DIN vs EPA#
 – Great to see DIN on technical sheet

• Handout: Guide to Label Claims (#10)
References

References

Exercise

• What are the active ingredients?
• What are the label claims?
• Is the product a broad-spectrum virucide?
• What are the product’s strengths?
• What are the product’s weaknesses?