SPATIAL AND TEMPORAL CLUSTERING AND RISK FACTORS FOR CALCIUM OXALATE COMPARED TO STRUVITE UROLITHS IN DOGS

Lee Wisener DVM, MSc
Dept. of Population Medicine
University of Guelph

November 30, 2009
OUTLINE

- PATHOPHYSIOLOGY & EPIDEMIOLOGY
- STUDY # 1: SPATIAL AND TEMPORAL CLUSTER ANALYSES
- STUDY # 2: RISK FACTOR ANALYSIS
- DISCUSSION
PATHOPHYSIOLOGY
& EPIDEMIOLOGY
OF CANINE
UROLITHIASIS
Burden of illness

- Proportional morbidity - 0.05 - 1.2 %
- 95% occur in the lower urinary tract
- Calcium oxalate & magnesium ammonium phosphate (struvite) - 92% of submissions
- Require surgery, other assisted voiding, or medical (struvite-only) therapy
Development of uroliths

- **supersaturated solution**
 - spontaneous crystal formation

- **saturated solution**
 - crystal aggregation
 - inhibitors and promoters

- **under saturated solution**
 - some crystals will dissolve
 - (struvite)

urine

ionic concentration
gradient
Contrasting struvite and CaOx uroliths

- also a function urine pH
 (alkaline urine - struvite; neutral to acidic - CaOx)

- Struvite – bacterial infection

- CaOx – low dietary levels: minerals, protein & moisture
 (Lekcharoensuk et al., 2002)

- Small breeds vs. other pure breeds
Demographic risk factors

<table>
<thead>
<tr>
<th>Risk Factors</th>
<th>CaOx</th>
<th>Struvite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Mean > 7 years</td>
<td>Mean < 7 years</td>
</tr>
<tr>
<td>Sex</td>
<td>Males</td>
<td>Females</td>
</tr>
</tbody>
</table>

CaOx – neutering and obesity increased risk

(Lekcharoensuk et al., 2000)
Contextual risk factors

- City vs. farm dogs - CaOx (Lekcharoensuk et al., 2000)
- Affluence and meat consumption (human)
- Water hardness (human)
CVUC

- Canadian Veterinary Urolith Centre
 free service to veterinarians

- 32,000 canine uroliths submitted to the CVUC from across Canada

- Quantitative analysis
Overall study objectives

- Identify contextual variables
- Evaluate complex interactions among individual level demographic and dietary risk factors
STUDY # 1

SPATIAL AND TEMPORAL CLUSTER ANALYSES
Objectives

- Spatial clustering:
 1. environmental (water, diet, clinic)
 2. socioeconomic

- Temporal clustering:
 1. trends in diet
 2. trends in therapy
Methods & Materials
Data

Study # 1

<table>
<thead>
<tr>
<th></th>
<th>Incident Cases</th>
<th>CaOx & Struvite</th>
<th>Geo-coded</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontario</td>
<td>11,414</td>
<td>92%</td>
<td>93%</td>
<td>9,735</td>
</tr>
</tbody>
</table>

- **Geo-coded cases:**
 1. 52% CaOx
 2. 48% struvite
Geo-coding to latitude and longitude coordinates with Geopinpoint Suite 5.4 v.2006.2 DMTI spatial

- Geocoding was done using owner address information
- Geocoding assessment done with a random sample of 100 locations in ArcGIS 9.2 (ESRI)
- Visual comparison to 2001 forward sortation area (FSA)
- Geographic Coordinate System Datum 1983 projection
Biases resulting from matching addresses to geocoded locations

- **Positional inaccuracies**
 - Addresses are assigned locations unacceptably far from their actual position (Oliver, et al., 2005)
 - 100% of our sample was within or within adjacent FSAs

- **Differential match rate** – non-random unmatched locations
 - Risk factors related to “missingness” are also the same risk factors for the disease (Oliver, et. al., 2005). In this study, population density related factors could be potential confounders
 - High match rate in our study, 93%
Data analysis

- Spatial scan statistic with SaTScan™ v.7.0.3 (Kulldorff and Information services)

- Bernoulli model – calcium oxalate compared to struvite urolith submissions
 1. spatial scan - household location
 2. temporal scan - date received

- Max. scanning window: 50% of population and/or study period
- 999 Monte Carlo simulations
Data analysis (cont.)

- Adjusted analysis using multiple datasets option (8):

1. Age (< 7 yrs : 7 + years)
2. Sex
3. Breed (small breed : non-small breed)
Results
Adjusted spatial analysis

- **Calcium oxalate:**
 - Toronto
 - O/E - 1.06
 - p-value - 0.001

- **Struvite:**
 - Hastings Highlands
 - O/E - 1.33
 - p-value - 0.02
Discussion

- Significant clustering in space

- Spatial and temporal clusters reflect:
 1. Contextual risk factors (biologic/socioeconomic)
 2. Submission bias

- Subsequent statistical modeling will account for diet, clinic, and regional socio-economic factors
STUDY # 2

RISK FACTOR ANALYSIS
Objectives

- Identify animal level risk factors (demographic, dietary)
- Identify community level contextual variables (distance, statistical area classification (SAC), cluster, income)
Statistical methods

- Multi-level modeling in a mixed logistic regression model with STATA v.10
- Owner census subdivision (CSD) as the random intercept (n=302)
- Demographic, dietary, community-level variables (median family income, statistical area classification, distance between owner and clinic locations) and year
- n = 7,297 observations
Dog-level variables

- Age and quadratic
- Sex
- Breed type:
 1. large and medium pure breeds
 2. small pure breeds
 3. mixed breeds
- Body condition (thin/normal vs. obese)
- Neuter status

- Two-way interactions among these variables:
 1. sex*age
 2. body condition*age
 3. sex*neuter status
<table>
<thead>
<tr>
<th>Dietary variables</th>
<th>OR</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vet diet =>6months vs. other diet</td>
<td>1.54</td>
<td><0.0001</td>
</tr>
<tr>
<td>Canned vs. dry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Small breed</td>
<td>0.70</td>
<td>0.03</td>
</tr>
<tr>
<td>2. Mixed breed</td>
<td>0.76</td>
<td>0.44</td>
</tr>
<tr>
<td>3. Large breed*</td>
<td>7.71</td>
<td><0.0001</td>
</tr>
<tr>
<td>Canned vs. both</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Small breed</td>
<td>0.80</td>
<td>0.21</td>
</tr>
<tr>
<td>2. Mixed breed</td>
<td>0.88</td>
<td>0.74</td>
</tr>
<tr>
<td>3. Large breed*</td>
<td>7.03</td>
<td>0.001</td>
</tr>
<tr>
<td>Community and time level variables</td>
<td>OR</td>
<td>P-value</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>Year 2006 (ref: 1998)</td>
<td>1.59</td>
<td>0.011</td>
</tr>
<tr>
<td>Cluster:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaOx vs. struvite</td>
<td>2.38</td>
<td>0.004</td>
</tr>
<tr>
<td>CaOx vs. outside</td>
<td>1.38</td>
<td>0.004</td>
</tr>
<tr>
<td>Struvite vs. outside</td>
<td>0.60</td>
<td>0.052</td>
</tr>
<tr>
<td>Statistics Canada 2006 - ArcGIS</td>
<td>1.41</td>
<td>0.020</td>
</tr>
<tr>
<td>CSD Median family income $70,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ref <$54,000 category)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* SAC, distance</td>
<td></td>
<td>N/S</td>
</tr>
</tbody>
</table>
Discussion

- Complex interactions among the individual dog level risk factors
Discussion

- Complex interactions among the individual dog level risk factors

- Dietary variables:
 1. Dietary moisture and breed-type
 2. Vet diets require further evaluation
Discussion

- Complex interactions among the individual dog level risk factors

- Dietary variables:
 1. Dietary moisture and breed-type
 2. Vet diets require further evaluation

- Impact of income and cluster
 1. lifestyle
 2. treatment choice
Acknowledgements

- Thanks to my committee members:
 - Dr. David Pearl
 - Dr. Doreen Houston
 - Dr. Richard Reid-Smith
- Thanks to Andrew Moore of CVUC
- Thanks to experts at the Data Resource Centre
- Thanks to the project sponsor:
 - Medi-Cal Royal Canin Vet Diet
- Thanks to my family, friends, and people in the Population Medicine Department